ATLANTIC COAST PIPELINE, LLC ATLANTIC COAST PIPELINE

and

DOMINION ENERGY TRANSMISSION, INC. SUPPLY HEADER PROJECT

Implementation Plan

EC51 Attachment 1

Geotechnical Investigation Reports

520 Pike Street, Suite 1375 Seattle, WA 98101 PH 206.496.1456 www.geosyntec.com

26 May 2017 TXG0007-012-6302

VIA EMAIL

Colin Olness, Contractor Atlantic Coast Pipeline 99 Edmiston Way Buckhannon, WV 26201

Subject: Geotechnical Investigation at Potential Slope Instability Site Supply Header Project (SHP) – Atlantic Coast Pipeline Project Route Revision 11B, Segment TL-635, MP 2.8 Doddridge County, West Virginia

Dear Mr. Olness:

This data summary report has been prepared by Geosyntec Consultants, Inc. (Geosyntec) for Dominion Transmission, Inc. (DTI) to present the geotechnical drilling investigation performed at a geohazard site located at Milepost (MP 2.8) along the Supply Header Project (SHP) TL-635 Segment of the Atlantic Coast Pipeline (ACP) Route Revision 11B (Project; Figure 1). The objective of this geotechnical drilling investigation was to characterize the subsurface conditions at the site and confirm or preclude suspected slope instability identified as part of our Phase 2 investigation [Geosyntec, 2016]¹, so that if required, measures may be designed to mitigate the effects of potential ground movement on the pipeline. This report summarizes activities completed in the field, a description of the geologic conditions observed at the site, and provides the results of the geotechnical laboratory testing program.

GEOTECHNICAL INVESTIGATION

This geotechnical drilling investigation included a site reconnaissance, access road improvements, geotechnical borings, instrumentation installation and monitoring, and geotechnical laboratory testing.

¹ Geosyntec Consultants, 2016. "Geohazard Analysis Program Phase 2 Report, Atlantic Coast Pipeline and Supply Header Project", submitted to Dominion Transmission Inc. dated 29 July 2016.

Site Reconnaissance

Our field reconnaissance performed on 24 August 2016 consisted of a site visit by a Principal Engineering Geologist from Geosyntec, two representatives from Horn and Associates (drilling subcontractor), and two representatives from the ACP to evaluate existing site conditions and access to the identified geohazard site location. The objective of the field reconnaissance was to familiarize the drilling contractor with the site conditions, identify potential access routes, evaluate the number and type of exploratory borings needed to adequately characterize the site, and select locations for the exploratory borings in the field.

Health and Safety

Prior to conducting our field investigation, Geosyntec updated our existing site-specific Health and Safety Plan (HASP) in accordance with Occupational Safety & Health Administration (OSHA) requirements. The updated HASP addressed potential hazards at the two site locations, including requirements for worker protection based on the anticipated activities. Additionally, the HASP also included directions to nearest emergency medical facility. Prior to commencing work at the site, Geosyntec also delineated the locations of the individual explorations and notified Underground Service Alert (USA, Dig-Alert) to identify the locations of any existing underground utilities within the immediate vicinity.

Site Access and Improvements

Access routes to the drilling locations at SHP MP 2.8 traversed Johnson Fork and followed preexisting logging roads. Due to the remote locations of the investigation site, minor grading and road restoration activities were performed where no previous access existed. Road restoration and grading work was performed by Horn and Associates utilizing a John Deere 85D tracked excavator. Work consisted of trimming secondary vegetation growth, smoothing the ground surface, and localized widening and leveling where cross-slope conditions would not permit safe passage of a light weighted track mounted drill rig.

Where ground disturbance was required, erosion and sediment control Best Management Practices (BMPs) were implemented to minimize the potential for erosion and/or sediment transport to adjacent areas outside the limits of disturbance. BMPs consisted of 8-inch silt socks installed along the edge of the graded access roads and the drilling investigation pads. Upon completion of drilling activities, straw and seed were hand broadcasted along the surface of graded areas to help reduce erosion and sediment transport and promote vegetative growth. A photographic log documenting completed road improvement and site restoration activities is provided in Appendix A.

Subsurface Explorations

This geotechnical investigation included drilling three exploratory borings at the SHP MP 2.8 geohazard site location along the northwestern facing slope (designated Borings B-1, B-2, and B-3; Figure 1). Borings were drilled between 25.5 and 34.1 feet below ground surface (ft bgs). Table 1 presents the coordinates, ground surface elevations, and termination depths of Borings B-1, B-2, and B-3.

Boring ID	Coor Proj	rdinates – UTM posed	, Zone 17S, NA As-B	S, NAD83 Ground Surface As-Built Elev. WGS84			
	Latitude	Longitude	Latitude	Longitude	(MSL- ft)	(ft)	
B-1	39.200558	-80.590574	39.200598	-80.590640	1,236	25.5	
B-2	39.200757	-80.590901	39.200751	-80.590948	1,213	32.3	
B-3	39.201017	-80.591118	39.201056	-80.591168	1,148	34.1	

Table 1: Coordinates of Boring Locations

The borings were advanced by Horn and Associates of Winchester, Kentucky utilizing a lightweight rubber track mounted Diedrich D-50 drill rig. Borings were drilled using a combination of 8-inch hollow-stem auger (HSA) and core drilling (NX) methods. During HSA drilling, drive samples were collected at approximately 30-inch intervals using a 2.5-inch diameter, 24-inch long Standard Penetration Test (SPT) sampler to facilitate lithologic logging and sample collection for geotechnical laboratory testing. SPT sampling was performed through the entire overburden material profile and into underlying bedrock, to the extent practical.

Following auger or SPT refusal, or upon encountering competent formation (bedrock) material, the investigations switched to core drilling methods until the borehole was advanced approximately 15 feet into bedrock. The core drilling process required circulation of water mixed with a naturally occurring bentonite based drilling fluid additive to regulate the temperature of the core bit, to carry cuttings to the surface, and to promote borehole stability. During the coring process, drilling fluid was pumped through the drill rods and past the bit before returning to the surface with cuttings through the annular space between the drill rods and the wall of the boring. At the surface, the fluid and cuttings were discharged into a baffled sump tank to allow the cuttings to fall out prior to recirculating the drilling fluid back down the borehole. Water required for this process was pumped from a nearby creek source located downslope along Johnson Fork.

The soil sample descriptions were logged by a Geosyntec Geologist in accordance with ASTM D2488. Additionally, recovered cores were logged to record structural orientation and discontinuities. Upon completion of logging, the cores were photographed (Appendix B) and retained in core boxes for subsequent sample selection and/or archiving. Table 2 summarizes the length of each boring, depth to top of bedrock, and the length of rock coring.

Roving ID	Boring Depth	Depth to top of	Length of Rock Coring (ft)				
Doring ID	(ft)	Bedrock (ft)					
B-1 (SHP MP 2.8)	25.5	11.0	14.5				
B-2 (SHP MP 2.8)	32.3	17.0	15.3				
B-3 (SHP MP 2.8)	34.1	19.0	15.1				

Table 2: Soil Thickness, Length of Rock Coring and Boring Penetration Depths

Geotechnical Instrumentation

Following completion of the core drilling and evaluation of the subsurface conditions, boreholes were selected for instrumentation consisting of either a standpipe piezometer to monitor groundwater levels, or an inclinometer to record potential slope movement over time. Borings not selected for instrumentation were backfilled from the bottom up with a bentonite-cement grout using a tremie pipe.

Piezometer

One standpipe piezometer was installed in exploratory Boring B-3 at the SHP MP 2.8 investigation site. The piezometer consisted of a 2-inch diameter PVC pipe, installed after drilling and prior to auger withdrawal, with a 10 ft section of 0.010-inch slotted screen (screened interval) placed at the overburden material and bedrock interface. The annular space around the screened interval was backfilled with a permeable filter pack generally consisting of coarse-grained sand. A 2-foot bentonite seal was placed at the top of the filter pack, and the remainder of the annular space was backfilled with bentonite-cement grout to prevent conveyance of surface water into the ground. Standpipe piezometer construction logs for the piezometer installed at Boring B-3 are provided in Appendix C and summarized in Table 3a.

Depth to groundwater within the Boring B-3 temporary standpipe piezometer was measured at 21.89 ft bgs on 18 October 2016 approximately 96 hours after drilling. A subsequent groundwater level survey was performed on 13 December 2016 and depth to groundwater was recorded at 18.35 ft bgs. This subsequent measurement is considered to represent relatively stabilized levels, however, the subsurface materials at the site generally exhibits a relatively high percentage of silt and clay sized materials, which reduce permeability. It is possible that the observed groundwater levels in the temporary piezometers may not represent fully stabilized

groundwater conditions due to the time rate of travel of groundwater through these materials. The measurements indicate that depth to groundwater decreased approximately 3.54 ft between 18 October 2016 and 13 December 2016. A summary of the standpipe piezometer data is provided below in Table 3a and presented graphically in Figure 2.

Piezometer ID	Boring Depth (ft)	Depth to Top of Bedrock (ft)	Depth to Groundwater ¹ (ft bgs)	Depth to Top of Screen (ft)	Screen Length (ft)	Depth to Bentonite Seal (ft)
B-3 (SHP MP 2.8)	34.1	19.0	18.35	22.9	10	6

I ADIC SA. Standpipe I lezonieter Construction

Notes:

1 - Depth to groundwater measured on 13 December 2016.

The surface completion for the piezometer included a locked surface monument to provide access for periodic groundwater level measurements, as well as to be used as a benchmark for subsequent level surveys. The temporary standpipe piezometer is anticipated to be monitored through pipeline construction, if deemed necessary. Upon completion of monitoring, the PVC piezometer should be cutoff below the ground surface and backfilled with bentonite-cement grout.

Inclinometer

One inclinometer was installed in exploratory Boring B-2 at the SHP MP 2.8 geohazard site to monitor the absence or the presence of progressive slope movement that may be imperceptible to the eye. Inclinometer casing consisted of 2.75-inch diameter acrylonitrile butadiene styrene (ABS) plastic. The bottom of the inclinometer casing was installed at 32.3 ft bgs. The annular space between the wall of the boring and the inclinometer casing was backfilled with a lean cement grout mixture from the bottom up using a tremmie pipe. Construction logs for the inclinometer installed at SHP MP 2.8 are provided in Appendix C and summarized in Table 3b.

Following instrumentation installation, an initial baseline survey (i.e., zero reading) was performed on 18 October 2016. The grouted-in inclinometer was allowed 5 days to set prior to conducting the baseline reading. A subsequent inclinometer survey was collected on 13 December 2016, 56 days following the zero reading. The inclinometer survey measurements indicate a cumulative deflection of less than 0.05 inches during the time between the zero reading and the subsequent inclinometer survey, and is considered negligible given the accuracy of the survey equipment. A summary of the inclinometer survey data is provided below in Table 3b and presented graphically in Figure 3.

Inclinometer ID	Boring Depth	Depth of Inclinometer Casing	Depth to Top of Bedrock	Length of Stickup above Ground
	(ft)	(ft)	(ft)	Surface (ft)
B-2 (SHP MP 2.8)	32.3	32.3	17	3.0

 Table 3b: Inclinometer Casing Construction

The surface completion for the inclinometer included a locked surface monument to provide access for periodic monitoring as well as to be used as a benchmark for subsequent level surveys. The inclinometer is expected to be monitored through construction, if deemed necessary. Upon completion of monitoring, the inclinometer casing should be cut off below the ground surface and backfilled with bentonite-cement grout.

SITE CONDITIONS

Knowledge of the site conditions was developed from a review of regional geologic conditions and our findings from explorations performed for this investigation.

Geologic Setting

The SHP MP 2.8 investigation site lies within the northeastern margin of the Appalachian Plateau Physiographic Province of West Virginia. The Appalachian Plateau is an uplifted tract of nearly horizontal or gently folded strata extending from the Adirondacks in northern New York, southwest through Pennsylvania, and terminating at the Coastal Plain in Alabama. The Appalachian Plateau feature is a southeast-facing escarpment bounded by the Central Lowland Province to the west and the Valley and Ridge Province to the east. The general site area is located within the Kanawha Physiographic Section. This section, also referred to as the Unglaciated Allegheny Mountains, exhibits high-elevation, low relief plateau-like morphology and is thoroughly dissected by streams with a dendritic drainage pattern and rugged topography.

The Doddridge County area is locally underlain by an approximately 1,100-ft thick sequence of Paleozoic sedimentary rocks of the Dunkard Group. The Dunkard Group is composed of Pennsylvanian-age non-marine cyclic sequences of lithic and micaceous sandstone, siltstone, red and gray shale, claystone and mudstone, limestone, and thin coal beds. During the Pennsylvanian, sedimentary rocks of the Dunkard Group were deposited within the Appalachian Basin following several major marine regressive cycles. Sedimentary rocks were deposited as a series of cyclothems representing landscape positions proximal to active streams. Deposition of sedimentary rocks ceased during early Permian age and were subsequently uplifted and faulted during the Appalachian Orogeny. Upper strata within the Dunkard Group are more resistant to weathering, resulting in decreased erosional processes.

Surface Conditions

The SHP MP 2.8 investigation site is located off of Johnson Fork along the proposed SHP TL-635 Segment, where the alignment extends up a steep northwestern facing slope. The general site area currently consists of vegetated woodlands with localized residential development in close proximity, but outside the proposed pipeline corridor. The surface morphology along the proposed alignment is characterized by moderate to steep sloping terrain (30% to 58% inclination) with intermittent benches from previous logging activities which break up the steep slope faces. The natural hillsides along the proposed alignment are covered by moderate growth of low lying grasses, shrubs, and deciduous woodlands. An existing natural gas well pad is located outside the proposed pipeline corridor approximately 900 feet northeast of the boring locations on Johnson Fork. Additionally, several below ground gas lines were identified in the area by a Dominion utility locator crew, but do not traverse the geotechnical investigation site area.

The elevation at Boring B-3 is approximately 1,148 feet above mean sea level (ft msl) sloping upwards towards the southeast along the proposed pipeline alignment. The elevations at Borings B-1 and B-2 are approximately 1,236 and 1,213 ft msl, respectively, and sloping upwards towards an unnamed ridgeline at SHP MP 2.7 (southeast). The maximum elevation at SHP MP 2.7 along the proposed alignment is approximately 1,500 ft msl.

Subsurface Conditions

The subsurface conditions at SHP MP 2.8 consist of surficial landslide deposits, generally comprised of reddish brown-to-brown, lean clay and silt with sand and gravel overlying bedrock of the Pennsylvanian-age Dunkard Group. Thickness of the landslide deposits observed in the borings at the SHP MP 2.8 geohazard site ranged from 11 ft (Boring B-1), 17 ft (Boring B-2), and 19 ft (Boring B-3). The identified landslide deposits were characterized by remolded and reworked intervals observed in each of the three borings indicating evidence of a potential historical landslide.

Bedrock of the Pennsylvanian-age Dunkard Group observed in the borings at SHP MP 2.8 consist of dark greenish gray-to-gray interbedded micaceous shale and sandstone. Recovered rock cores were generally thinly bedded (10° to 30° bedding angles) and closely fractured (10° to 20° fracture angles). Recovered cores were also variably weathered consisting of iron oxidation infilling along the fracture planes. A generalized geologic cross section along the slope profile is presented in Figure 1. The rock quality designation (RQD) of the recovered cores was generally fair to excellent ranging from 71% to 78% (Boring B-1), 70% to 72% (Boring B-2), and 63% to 92% (Boring B-3). Detailed logs of the three borings advanced at the SHP MP 2.8 site, as well as a key sheet, are presented in Appendix D.

Conditions observed in the borings at the SHP MP 2.8 geohazard site along the with the surface morphology features (i.e., moderate to steep sloping terrain and intermittent breaks in the slope faces) suggests the site experienced previous slope instability and subsequent episodic slope movement along the interface between the fine grained colluvial deposits and highly weathered bedrock. However, no evidence of recent active failure such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation.

LABORATORY TESTING

Geotechnical Laboratory Testing Program

Geosyntec contracted Geotechnics, Inc. (Geotechnics) of East Pittsburgh, Pennsylvania to conduct laboratory testing assigned by Geosyntec on selected soil samples and rock cores to evaluate the pertinent geotechnical index properties. The laboratory testing program, on soil samples, was primarily focused on soil classification and index testing. Testing on select rock cores focused on compressive and tensile strength. The laboratory testing program consisted of:

Soil Samples

- Water content tests per ASTM D2216;
- Atterberg limit tests per ASTM D4318;
- Sieve analysis tests per ASTM D6913; and
- Hydrometer tests per ASTM D7928.

Rock Cores

- Split tensile strength test per ASTM D3967; and
- Unconfined compression test per ASTM D7012-Method C.

Table 4 summarizes the number and types of laboratory testing conducted on soil and rock samples from the SHP MP 2.8 geohazard site.

	Number of Laboratory Tests									
Types of Laboratory Tests	Boring B-1	Boring B-2	Boring B-3							
Water Content	3	3	3							
Atterberg Limits	1	2	2							
Sieve Analysis	1	2	2							
Hydrometer Test	1	2	2							
Rock Split Tensile Strength	3	0	3							
Rock Uniaxial Compressive Strength	1	0	1							

Table 4: Number and Types of Laboratory Tests

Laboratory Test Results

The laboratory test results are also plotted in the corresponding boring logs (Appendix D), and the individual test results presented in detail in Appendix E.

Soil Sample Testing

Given the granular nature of the soils from SHP MP 2.8, select samples were tested for grain-size distribution to quantify percentages of gravels, sands and fines. The results show that the soils consist of lean clay (CL) with sand and gravel, with the exception of one sample (B-2-6 at 14.8 ft bgs), which consists of clayey sand (SC) with gravel.

The laboratory soil testing performed for the SHP MP 2.8 borings included water content and Atterberg limits measured on selected lean clay and silt samples and grain–size analysis to quantify the percentages of gravel, sand and fines, particularly on samples containing coarser grained material. Table 5 presents a summary of the laboratory test results conducted on soil samples.

Boring ID	Sample ID	Depth	Water Content	WaterPercent of Gravel (1)H(%)(%)		Liquid Limit	Plastic Limit	Plasticity Index
		(II)	(%)	(%)	(%)			
B-1	B-1-1	2.3	15.3	-	-	-	-	-
B-1	B-1-3	7.0	15.8	0.0	94.7	42	23	19
B-1	B-1-4	8.8	7.8	-	-	-	-	-
B-2	B-2-1	2.5	21.8	0.21	76.1	39	21	18
B-2	B-2-3	7.5	17.3	-	-	-	-	-
B-2	B-2-6	14.8	4.6	21.0	45.0	30	19	11
B-3	B-3-1	3.0	13.8	18.9	56.7	35	20	15
B-3	B-3-3	7.7	9.4	-	-	-	_	-
B-3	B-3-6	15.5	11.4	4.3	60.3	33	19	14

Table 5: Summary of Laboratory Test Results on Soil Samples

Notes:

1 - Retained #4 sieve.

2 - Passing #200 sieve.

"-" Not analyzed

Rock Core Testing

A summary of laboratory test results conducted on rock samples is presented in Table 6.

Sample Unit Uniaxi		Uniaxial	Split Tensile Strength (psi)						
Boring ID	Core ID	Interval	Weight	Compres. Strength	Specimen	Specimen	Specimen		
		(ft)	(pcf)	(psi)	1	4	5		
B-1	R-2	20.2- 21.3	162.9	6,790	967.5	880.6	798.5		
B-3	R-1	20.3- 21.3	151.9	8,810	649.4	654.6	664.4		

Table 6: Summary of Laboratory Test Results on Rock Samples

Summary of Laboratory Testing

The geotechnical laboratory test results indicate that water content of the landslide deposits varied between 8% and 16% (Boring B-1), 5% and 22% (Boring B-2), and 9% and 14% (Boring

B-3). The water content at the time of the field investigation showed a decreasing trend with depth. The sieve analyses indicate that the landslide deposits have approximately 45% to 95% fine-grained particles (particles smaller than 75 micrometers [μ m]) and approximately 10% to 41% clay particles (particles smaller than 5 μ m). The Atterberg test results show that the landslide deposits contain a plasticity index (PI) of 8 to 11 and the soil unit is mainly within the low plasticity clay zone (i.e., CL). The PI is generally constant with depth within the low plasticity clay soil unit.

The split tensile strength of the recovered rock cores varied between 798.5 and 967.5 pounds per square inch (psi) for samples consisting of primarily shale material (core R-2) and between 649.4 and 664.4 psi for samples consisting of primarily sandstone (core R-1). The unconfined compression strength of the recovered rock core was 6,790 psi for shale material (core R-2) and 8,810 psi for sandstone material (core R-1).

SUMMARY OF FINDINGS

Surficial morphologic features observed during our Phase 2 reconnaissance along with subsurface conditions recorded during the geotechnical drilling investigation at the SHP TL-635 MP 2.8 geohazard site suggest previous shallow seated slope movement occurred downslope along the proposed ACP alignment. The approximate extent of mapped instability is presented in Figure 1. Although no evidence of recent or active slope movement such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation, data collected during subsequent inclinometer monitoring events will be used to supplement and inform site-specific engineering evaluations, and recommendations for mitigation measures should future potential instability be identified. An addendum to this data summary report will be issued as subsequent monitoring data is collected.

As a consequence of these findings, and a subsequent engineering analysis of slope stability, reported separately, a site specific geotechnical hazard mitigation design has been developed for this slope which incorporates:

- restrictions on material stockpiling during construction grading;
- targeted drainage measures along the trench;
- use of deformable backfill around the installed pipeline; and,
- recommendations for post construction monitoring.

CLOSING

Geosyntec appreciates the opportunity to provide Dominion Transmission, Inc. with this data summary report, and we look forward to working together on this important project. If you have any questions or require additional information, please contact Logan Brant Warner (lbrant@geosyntec.com, 281.810.5056) or Jared (jwarner@geosyntec.com, 858.716.2885).

Sincerely,

Geosyntec Consultants,

Logan Brant, Ph.D., P.E. Senior Geotechnical Engineer

Jared Warner, P.G., Project Geologist

Attachments:

Figures

- Figure 1 Site Plan and Generalized Geologic Profile
- Figure 2 Piezometer Survey Data
- Figure 3 Inclinometer Survey Data

Appendices

- Appendix A Photographic Log
- Appendix B Core Photographs
- Appendix C Piezometer and Inclinometer Construction Logs
- Appendix D Logs of Borings B-1, B-2, and B-3
- Appendix E Laboratory Test Results

FIGURES

PROJECT NO: TXG0007

Notes: Precipitation data obtained from weather station located in Clarksburg, West Virginia. Reference: www.wunderground.com

Piezometer Survey Data (Boring B-3)

Project: ACP SHP MP 2.8 Location: Doddridge County, West Virginia Project Number: TXG0007-012-6302 Client: Dominion Transmission, Inc.

Mid Slope, Inclinometer B-2

Note: See inclinometer installation record for additional information.

Inclinometer Survey Data (Boring B-2)

Project: ACP SHP MP 2.8 Location: Doddridge County, West Virginia Project Number: TXG0007-012-6302 Client: Dominion Transmission, Inc.

APPENDIX A PHOTOGRAPHIC LOG

 Photograph 10 – (during work) Location: Temporary access route (access to SHP MP 2.8) Looking northwest. Photo shows site conditions during temporary access route improvement activities along the existing abandoned logging trail.
Photograph 11 – (after work) Location: Temporary access route View looking northwest. Photo shows site conditions following drilling and restoration activities of temporary access route including casting seed in locations covered by straw.
 Photograph 12 – (during work) Location: Abandoned Logging Trail (access to SHP MP 2.8) View looking east. Photo shows site conditions during temporary access route improvement activities along the existing abandoned logging trail.

APPENDIX B CORE PHOTOGRAPHS

Geosyntec▷

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP SHP MP 2.8

CLIENT: DOMINION TRANSMISSION, INC.

PROJECT NO.: TXG0007-012-6302 LOCATION: DODDRIDGE COUNTY, WEST VIRGINIA

SHP MP 2.8 Boring B-1: Box 1 of 1 (11.0 to 25.5 ft bgs)

SHP MP 2.8 Boring B-2: Box 1 of 1 (17 to 32 ft bgs)

SHP MP 2.8 Boring B-3: Box 1 of 1 (19 to 34 ft bgs)

APPENDIX C

PIEZOMETER AND INCLINOMETER CONSTRUCTION LOGS

Geosyntec Consultants

Appendix C - Piezometer Construction Log

Site: Atlantic Coast Pipeline MP 2.8	Date: 12-Oct-16
Well ID: B-3	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 34.1'
Drillers: Steven Ison	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Well Depth: 33.2'
	Well Diameter: 2"
Top of	Well Construction:
Casing 1.8	Material: SCH 80 PVC
	Inside Diamter: 2"
Ground Elev. 0	Screen Slot Size: 0.01"
	Screen Beg.: <u>22.9'</u> End: <u>32.9''</u>
	Sump Y / N
	Type/Lenth: PVC End Cap (0.3")
	Filter Pack:
	Type/Brand: Global Drilling #5 Quartz Sand
	Amount Used: 6.5 50lb bags
	Placement Method: Tremie
	Seal:
Top of Seal N/A Seal Length	Type/Brand: N/A
	Amount Used: N/A
Seal Bottom IN/A	Vol. Fluid Added: N/A
Top of Sand Abov	e Set-up Time: N/A
Screen 22.7 Screen	Placement Method: N/A
	Grout:
	Type I/II Portland Cement/PureGold
Screen	1 94lb bag of Portland + 25lb bag
Length	Amount Used: bentonite
10'	Vol. Fluid Added: \sim 30 gallons H ₂ O
Filter Pack	Placement Method: Tremie
Length	Well Completion:
9'	Above Grade / Below Grade
Screen	Guard Posts? Y / N
Bottom 32.9' Sump Leng	th Pad Size: N/A
	Cover Type/Size: Protective Cover (4.5")
Well Depth 33.2'	Comments: Hole collapsed from 19.1' to 15". Filter pack
	backfilled from 15' to 6'. Bentonite-grout backfilled from 6'
Boring Depun 34.1	to surface.
Well Diam.	
€ Gec	blogist Signature: Jared Warner
Borehole Diam.	

Geosyntec Consultants

Appendix C - Inclinometer Construction Log

Site: Atlantic Coast Pipeline MP 2.8	Date: 13-Oct-16
Boring ID: B-2 (MP 2.8)	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 32.3'
Drillers: Steven Ison	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Inclin. Depth: 33.2'
	Inclin. Diameter: 2.75"
Top of Casing 3'	Well Construction: Material: ABS Plastic (Ouck Connect)
	Inside Diamter: 2 32"
Ground Elev. 0	Screen Slot Size: N/A
	Screen Beg : N/Δ End: N/Δ
	Sump V / N
	Type/Lenth:
	Filter Pack:
	Type/Brand: N/A
	Amount Used: N/A
	Placement Method: N/A
	Seal:
Top of Seal N/A Seal Length	Type/Brand: N/A
	Amount Used: N/A
Seal Bottom N/A	Vol. Fluid Added: N/A
Top of N/A Sand Above	Set-up Time: N/A
Screen IV/A Screen	Placement Method: N/A
	Grout:
	Type I/II Portland Cement/PureGold
Screen	1 94lb bag of Portland + 25lb bag
Length	Amount Used: bentonite
N/AN/A	Vol. Fluid Added: ~ 30 gallons H ₂ O
Filter Pack	Placement Method: Tremie
Length	Inclin. Completion:
N/A	Above Grade / Below Grade
Screen	Guard Posts? Y / N
Bottom IN/A Sump Length	Pad Size: N/A
India Double 22.21	Cover Type/Size. Protective Cover (4.5)
	Comments: Bottom of inclinometer casing placed at the
Boring Depth 32.3'	boring depth (32.3') and grouted to surface.
2.75"	
Inclin. Diam.	ogist Signature: Jared Worper
8"/2.16"	
Borehole Diam.	

APPENDIX D

LOG OF BORINGS B-1, B-2, and B-3

Geosyntec[▶]

consultants

engineers | scientists | innovators

GEOTECH - GEOSNTEC.GDT - 4/5/16 13:47 - P:\GINT\PROJECTS\BLUE RIDGE GEOTECHNICAL DRILLING\ACPHDD

GPJ

	Creosyntec consultants Houston Texas 77077								ST R	SHP MP 2.8 B-1 ACP SHP TL-635 TXG0007 Doddridge County, WV	SHEET 1 OF 2 GROUND SURF. 1236 TOP OF CASING										
	G	Soll-5910 Appendix D - Boring Log							START DRILL DATE 10/13/2016 FINISH DRILL DATE 10/13/2016				DATUM Ft above MSL								
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Nam 2) Color 3) Moisture 4) Grain Siz 5) Percentag	DESCRIPTION e (USCS) 6) Plasticity 7) Density/Consistency 8) Other (Mineral Content, e Discoloration, etc.) ge	GRAPHIC LOG	SAMPLE NO.	ТҮРЕ	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pcf)	MOIST UNIT WEIGHT (pd)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)		BLASTIC LIMIT	PLASTICITY INDEX
- 2-	.1235_	FAT CLAY (brown, Dry Presence ((CH), Light reddish brown to yellowish / to moist, Medium stiff, High plasticity, of Shale fragements (up to 0.5 inch).		B-1-1	Z	2 3 3	6	83									15.3			
4-	-	Becomes re brown, Dry fragments.	ernolded dark reddish brown and olive y to moist, Stiff, Presence of Shale		B-1-2	Z	3 4 7	11	100												
6-	1230_	LEAN CLA Stiff, Prese	Y (CL), Olive brown, Dry to moist, ence of Shale fragments.		B-1-3	$\left[\right]$	3 6 7	13	67						92.8	7	0.2	15.8	42	23	19
- 10		Becomes pl	laty, Hard.		B-1-4	2	50/4	50	100									7.8			
- 12-	1225											Rig chatter at 10.5 ft below ground surface (bgs). Auger refusal at 11 ft bgs. Switch to rock coring.									
14-																					
16-	1220_																				
- 20-																					
- 22-																					
24-																					
26-																					
30-			Jorn & Accession		E : 20	200				Ee.											
	30																				

	Coograptoo									SORING SHP MP 2.8 B-1 SI										EET 2 OF 2					
				11490 W Houston Tel: (281	estheimer R Texas 7707) 920-4601	toad 7	<u> </u>		PRO NUI LOO STA FIN	DJE MBE CAT ART ISH	CT ER ION DR DR	A T I D ILL	CP 3 (G0 odd DA	SHP TL-635 007 ridge County, WV TE 10/13/2016 TE 10/13/2016	GROUND SURF. 1236 TOP OF CASING DATUM Ft above MSL										
	RO	CK-5910			Bornig	L0;	9			SAM						DIS	CONT			т.					
DEPTH (ft-bgs)	ELEVATION (ft)	1) Formatior 2) Rock Nan 3) Color 4) Grain Size 5) Bedding	DESCF I, Member ne e/Percentage	6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Mine Discoloratio	ralization, n, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ		APERTURE			PLANARITY	DIP (degrees)				
-	1235 _ 1234 _ 1233 _ 1232 _ 1231																								
-	.1230 _ .1229 _ .1228 _																								
- 10-	1227 _ 1226_																								
	.1225 _ .1224 _ .1223 _	SANDSTONE, Dark olive brown, Very thin bedding (10-30 degrees), Closely fractured (10-20 degreees) with FeOx along the fracture flaws, Fresh, Hard, Presence of microcrystalline Mica flakes.						R-1	4.5	3.8	84	71	4												
-	1222 _	SHALE, Greenish gray to gray, Platy, Very closely to closely fractured (10 degrees), Slightly weathered, Low hardness.																							
15-	1221_	No recovery.																							
-	.1220 _ .1219 _	No recovery. Becomes dark re closely fractured	eddish brown, I (10 degrees),	Platy, Very closely Hard.	to			R-2	10	9.3	93	78	10												
-	.1218 _ .1217 _		h grou to dork d	rov Closely to more	lium fracturad																				
20-	.1216_ .1215 _ .1214 _		n gray to dark g	jiay, Giosely to me																					
25-	.1213 _ .1212 _ .1211 _	Fractures become	es nearly vertica	al (70 degrees) with	FeOx infilling.																				
	.1210 _ .1209 _ .1208 _ .1207 _													ermination depth at 25.5 ft bgs. Backfill to surface using bentonite grout.											
	DNTR QUIPN RILL M AMET	200 1 206 1 NTRACTOR Horn & Associates LATITUDE: 39.20060 UIPMENT Diedrich D-50 LONGITUDE: -80.59064 ILL MTHD. Rock Coring METER 8 inches GGER Jared Warner REVIEWER Jared Warner									: SHE	ETF	ORS	SYMBOLS AND ABBREVIATIC											

d H S Ċ BORING CONT CORF

	Creosyntec consultants 11490 Westheimer Road Houston Texas 77077 Tel: (281) 920-4601											G CT R ON	SHP MP 2.8 B-2 ACP SHP TL-635 TXG0007 Doddridge County, WV	SHEET 1 OF 3 GROUND SURF. 1213 TOP OF CASING									
	0	GS FORM: SOIL-5910	Appendix I	281) D - E	920-4 Bori i	ng Lo	bg		ן יוך	STA FINI	RT SH I	DRII	LL DATE 10/12/2016 LL DATE 10/13/2016	DATUM Ft above MSL									
								SAM	PLE		2		COMMENTS		L L	ABC	RAT	ORY	َ RES		S	RG	
DEPTH BGS (fl	ELEVATION (fl	1) Soil Na 2) Color 3) Moistu 4) Grain \$ 5) Percer	ame (USCS) 6) Plasticity 7) Density/Consister ire 8) Other (Mineral Co Size Discoloration, etc. ntage	ncy ntent, .)	GRAPHIC LOG	SAMPLE NO.	TYPE	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tst	TORVANE (tsf)	1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pd	MOIST UNIT WEIGHT (p	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (?			PLASTICITY INDEX	
2-	1210	LEAN CLAY WITH SAND (CL), Dark reddish brown, Moist, Medium stiff, Presence of fine sand and black lenses with Shale fragments.				B-2-1		2 3 4	7	67						73.1	24.7	2.2	21.8	39	21	18	
4-		_ Becomes	Becomes stiff, Increase in Shale Fragments.					2 5 6	11	33													
6- - 8-	1205	_ Decrease Presence Crumble	Decrease in moisture content, Dry to moist, Presence of Sandstone fragments (<0.25 inch), Crumbles.			B-2-3		3 6 7	13	67									17.3				
- 10-		_ Becomes _	s dry, Hard, Blocky to platy.			B-2-4		15 50/3	50	100													
- 12- -	1200	CLAYEY	' SAND WITH GRAVEL (SC), Light of	live		B-2-5	~	50/3	50	0													
14-		brown, Dry, Hard, Presence of platy Shale fragments (up to 1 inch).				B-2-6		30 50/3	80	100									4.6				
- 16 - - 18	1195	- -											Auger refusal at 17 ft bgs. Switch to rock coring.										
- 20-		_																					
22-	1190	- - L																					
24-		-																					
26- - 28-	1185	-																					
30- CC			Horn & Associates	LA	TITUD	E: 39	.200)75	 		ES:												
	AME CGG	MTHD. ETER ER	ORDIN	Varner	/STI	EM:		SEE M	KEY S	SHEE	T FOR SYMBOLS AND ABBREVIA	TION	S										

	Coostac®										RIN	G	S	H	P MP 2.8 B-2		SHEET 2 OF 3								
		GS			11490 1 Housto Tel: (28	Westheimer F n Texas 7707 81) 920-4601 D - Borin o	Road 7 	<u>a</u>	NUMBER TXG0007 GROUND SURF LOCATION Doddridge County, WV TOP OF CASIN START DRILL DATE 10/12/2016 DATUM Ft abo FINISH DRILL DATE 10/13/2016 DATUM Ft abo											. 1213 3 re MSL					
\vdash			K-5910								SAM	IPLE					DIS	CON	rinui'						
DEPTH (ft-bas)			1) Formation 2) Rock Nan 3) Color 4) Grain Size 5) Bedding	DESCF I, Member ne s/Percentage	RIPTION 6) Weatherin 7) Hardness 8) Cementati 9) Moisture 10) Other (M Discolora	g ion ineralization, ation, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)			
	_121	2 _																							
	121	1																							
	121	0																							
	120	9																							
5	_120	8																							
	_120	07 _																							
	120	6																							
	_120	05 _																							
	_120	94 _																							
10	_120)3_																							
	_120)2 _																							
	_120	1																							
	_120																								
	119	8																							
15	_119	7																							
	_119	6																							
	_119	95 _	SANDSTONE, O beddings (10-20 c	live brown to da legrees), Close	ark olive brown, l ly fractured (10-2	Black cross 20 degrees),			R-1	5	2.4	48		7											
	_119	94 _	riesii, naiu.																						
20	_119	93_	No recovery.																						
	_119	02 _																							
11/02/14 1.00	119 119	91 90	SHALE, Dark red with FeOx along find	ldish brown, Cle racture planes,	osely fractured (Slightly weather	10-20 degrees) red, Low			R-2	4	3.5	87.5	70	2											
	_118	19 -	Becomes olive bro	own, Fresh, Ha	rd.																				
25	_118	8_	Becomes dark red hardness.	aaish brown, Sl	ightly weathered	ı, Medium																			
	_118	57 _	Becomes dark gra No recovery.	ay.					R-3	6	5.6	93	72	7											
NOV.	_118	6 _	Becomes dark gra weathered, Soft.	ay, Interbedded	, Presence of Fa	at clay, Heavily																			
	118	5	Becomes dark red weathered, Hard,	ddish brown, 30 Presence of Fa) to 40 degrees f at clay seams be	ractures, Slightly tween 27.2 to																			
	_118	4 _	28.3 ft bgs.																						
30 C	_h18	B3 TRA	CTOR Horn	& Associate	es	LATITUDE:	39.20	1 075	י הר	I NOT	I Fes	:				I									
	QUI	PMI	ENT Diedr	ich D-50		LONGITUDE:	-80.59	9095 EM·			2														
	IAMETER 8 inches																								
Í	OG	GEF	R Jarec	l Warner	REVIEWE	R Jared Warn	er			SEE	KEY	SHE	ETF	OR	SYMBOLS AND ABBREVIAT	IONS									

d H S Ċ BORING CONT CORF

DEPTH (ft-bgs)	GS RO (#)	S FORM: DCK-5910	y LUCC sultants	11490 Westheimer Houston Texas 770 Tel: (281) 920-460	Road				JE	СТ	A	CP S	SHP TI -635										
DEPTH (ft-bgs)	GS RO (JJ)	S FORM: OCK-5910	Δη	Tel: (281) 920-460	consultants 11490 Westheimer Road Houston Texas 77077 Tel: (281) 920-4601								NUMBER TXG0007 GROUND SURF. 1213 LOCATION Doddridge County, WV TOP OF CASING										
DEPTH (ft-bgs)	(ft)	JCK-5910	GS FORM: ROCK-5910 Appendix D - Boring Log									DA DA	TE 10/12/2016 TE 10/13/2016	DATUM Ft above MSL									
DEPTH (ft-bgs)	(ft)				<u> </u>	<u> </u>			SAM	IPLE					DIS	CONT	INUI		ТА				
_1	ELEVATION	1) Fo 2) Ro 3) Co 4) Gr 5) Be	DES0 rmation, Member vck Name olor ain Size/Percentage vdding	CRIPTION 6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)			
	1182 _																						
	1181 _																						
	1180 _	-											Termination depth at 32.3 ft bgs.										
	1179 _	-																					
35 –	1178_	1																					
	1176]																					
	1175 _																						
_1	1174 _																						
40-	1173_	-																					
_	1172 _	-																					
_1	1171 _	-																					
_1	1170 _	-																					
	1169 _																						
45-	1160_																						
	1166 _																						
_1	1165 _	-																					
_1	1164 _	-																					
50 —	1163_	-																					
	1162 _	-																					
4/25/1	1161 _																						
	1160 _ 1150																						
	1158_]																					
	1157 _																						
	1156 _	-																					
	1155 _	-																					
	1154 _	-																					
	I153 Image: Constraint of the second secon		tes LATITUDE: LONGITUDE COORDINAT	39.20 : -80.59 E SYST	075 9095 T EM:		 NO ⁻	 Fes	:						<u> </u>								

d H S Ċ BORING CONT CORF

	Geosyntec [®]										BOR		3	SHP MP 2.8 B-3	SHEET 1 OF 3										
			y L LU nsult		11490 We Houston T Fel: (281)	sthein exas 7 920-4	ner Roa 77077 601	ad				JEC IBE ATI RT I	R ON DRII	TXG0007 Doddridge County, WV LL DATE 10/12/2016	GROUND SURF. 1148 WV TOP OF CASING DATUM Ft above MSL										
	S	OIL-5910		Appen	iaix D -	Bor	ing L	-09		JĽ		SHI	JRII												
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Na 2) Color 3) Moistur 4) Grain S 5) Percent	DE me (USC re size tage	ESCRIPTION S) 6) Plasticity 7) Density/Co 8) Other (Mine Discoloratio	onsistency eral Content, on, etc.)	GRAPHIC LOG	SAMPLE NO.	TYPE	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pd)	MOIST UNIT WEIGHT (pcf)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			PLASTICITY INDEX		
2-	 - 1145	SANDY L Yellowis Medium sporadic	EAN CLA h and red plasticity, Sandstor	Y WITH GRAVEL (dish brown, Dry to n , Very stiff, Presence ne fragments (up to	CL), noist, e of 0.5 inch).		B-3-1	\square	3 8 8	16	100						54.3	21.6	24.1	13.8	35	20	15		
4-		Becomes lensed w	dark redo vith black	lish brown, Blocky to Shale.	o platy,		B-3-2	\square	12 21 38	59	100														
6-		Becomes	Becomes light olive brown, Dry, Hard, Presence of localized black organics with FeOx staining.				B-3-3	7	16 32 36	68	83									9.4					
8- - 10-		Becomes	Becomes light olive brown and reddish brown.				B-3-4	\square	9 24 31	55	100														
- 12- -	 - 1135	SILT (ML) Non-plas), Dark re stic, Block	ddish brown, Dry, H xy, Crumbles.	lard,		B-3-5	\square	13 21 27	48	100														
14-		SANDY L brown to	EAN CLA olive bro	WITH GRAVEL (wn, Very stiff, Low p	CL), Dark blasticity.		B-3-6		15 13 16	29	100						58.6	30.2	11.2	11.4	33	19	14		
- 16 -		Becomes of Shale	light olive fragment	e brown, Hard, Platy s.	, Presence		B-3-7		35 50/1	50	39														
- 18		-												Rig chatter at 18 ft bgs. Auger refusal at 19 ft bgs. Switch to rock coring											
20-		-												Switch to rock coning.											
22-	1125	-																							
24-		-																							
26-	1120																								
		-																							
	ontf Quipi Rill Ame Dggi	Ractor Ment Mthd. Ter Er	Horn & Diedric Hollow 8 inche Jared \	Associates ch D-50 Stem Auger es Warner RE	LA LO CO EVIEWER	TITUD NGITU ORDIN Jared \	E: 39 IDE: -80 NATE S ^V Warner	0.201 0.59 ⁻ YSTE	06 117 EM :			ES:	SHEE	T FOR SYMBOLS AND ABBREVIA	TIONS	5									
	\sim		ensimter®								RIN	G	S	HF	P MP 2.8 B-3			5	SHEE	T 2 (OF 3	•]			
-------------------------	---	---	--	---	---	---	-------------	----------	------------	---------------------------------	---------------------------------	--------------	-----------------------	----------------------	---	-------------------	----------------------	-----------------------	---------------------	--------------	-----------	---------------			
		GS	COSYLI CONSUL		11490 \ Houstor Tel: (28	Westheimer R n Texas 7707 31) 920-4601	Road 7	<u> </u>		PRO NUI LOO STA FIN	DJE MBE CAT ART ISH		A T> I D ILL	GP (G0) odd DA	SHP TL-635 007 Iridge County, WV ITE 10/12/2016 TE 10/12/2016	gro Top Dat	ound of C um F	SURI ASIN t abo	F. 11 IG ve M	48 SL					
\vdash		ROC	СК-5910			Bonnig		9																	
DEPTH (ft-bgs)		ELEVATION (TT)	1) Formatior 2) Rock Nan 3) Color 4) Grain Size 5) Bedding	DESCF a, Member ne e/Percentage	RIPTION 6) Weatherin 7) Hardness 8) Cementatio 9) Moisture 10) Other (Mi Discolora	g on neralization, tion, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ		APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)			
5- 10- 15- 20-	_114 _114 _114 _114 _114 _114 _114 _113 _113	$\begin{array}{c} 47 \\ +46 \\ - \\ +45 \\ - \\ +44 \\ - \\ +41 \\ - \\ +40 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	SANDSTONE, D cross bedding, 10 Presence of sligh between 21.2 to 2 SHALE, Dark gra bedding, Fresh, H SANDSTONE, D SHALE, Dark gra SANDSTONE, D	ark greenish gr to 20 degrees tly weathered, v 1.5 ft bgs. avj to gray, 10 to lard. ark gray to gray ay to gray, Fresl ark gray to gray	ay to gray, Mediu fracture sets, Fre very soft, gray lea 20 degrees dark r, Fresh, Hard. n, Hard. r, Fresh, Hard.	Im dark grey 2sh, Hard. In clay seam			R-1 R-2	2.5	2.5	100	92	3											
25-	_112 _112 _112 _112 _112 _111	23 22 21 20 19	SHALE, Dark gra SANDSTONE, D	ıy to gray, Sligh ark gray to gray	tly weathered, Μ	edium Hard.			R-3	8	8.9	99	89	9											
	30_H118 I. REXENT I																								

JTEC GDT 4/25/17 d H S Ċ BORING CONT CORF

$\left[\right]$	\sim		r soto o B	a de la constante de				во	RIN	G	S	H	P MP 2.8 B-3			s	HEE	T 3 (OF 3	
'		COS	y L LLEC * nsultants	11490 Westheimer R Houston Texas 7707	load 7			PRO NUI LOO	OJE MBE CAT	ER ER 101	A (T D	CP: KG0 odd	SHP TL-635 007 Iridge County, WV	groi Top (JND S	SURF	■. 11 G	48		
	G	S FORM:		endix D - Boring	Loc	, r	ή	STA FIN	ART ISH	DR DR	ILL	DA DA	TE 10/12/2016 TE 10/12/2016	DATL	JM F	t abo	ve M	SL		
F		JCK-5910				<u> </u>			SAM	IPLE					DIS	CONT	INUI	TY DA	ТА	
DEPTH (ft-has)	ELEVATION (ft)	1) Fo 2) Ro 3) Co 4) G 5) Bo	DESCH ormation, Member ock Name olor rain Size/Percentage edding	 6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Mineralization, Discoloration, Odor, etc.) 	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
	_1117 .	_																		
	_1116 .	-																		
	_1115 .	-																		
	1114 .												Termination depth at 34.1 ft							
35	_1113_	-											bgs.							
	_1112 .	-																		
	1110	-																		
	_1109																			
40	_1108_	_																		
	_1107 .	_																		
	_1106 .	-																		
	_1105 .	-																		
	_1104 .	-																		
45	_1103_	-																		
	_1102 .	-																		
	_1101 .	-																		
	1099																			
50	_1098_																			
	_1097	_																		
	_1096 .	_																		
	_1095 .	-																		
	_1094 .	-																		
55	_1093_	-																		
	_1092 .	-																		
	_1091 .	-																		
	_1090 .	-																		
	_1089 .	-																		
	ONTR QUIPN RILL DAME	VOUNDER 1 I																		

APPENDIX E

LABORATORY TEST RESULTS

November 30, 2016

Project No. 2016-527-001

Mustafa Erten Geosyntec Consultants, Inc. 11490 Westheimer Rd., Suite 150 Houston, TX 77077

<u>Transmittal</u> Laboratory Test Results ACP TXG0007

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted, *Geotechnics, Inc*.

David R. Backstrom Laboratory Director

We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

MOISTURE CONTENT

ASTM D 2216-10

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2016-527-001

Lab ID:	017	018	019	020	021
Boring No.:	B-1(MP2.8)	B-1(MP2.8)	B-1(MP2.8)	B-2(MP2.8)	B-2(MP2.8)
Depth (ft):	2.3	7.0	8.8	2.5	7.5
Sample No.:	B-1-1	B-1-3	B-1-4	B-2-1	B-2-3
Tare Number	18	19	20	21	10
Wt. of Tare & Wet Sample (g)	72.28	66.24	65.72	67.33	73.02
Wt. of Tare & Dry Sample (g)	63.62	58.13	61.47	56.52	63.24
Weight of Tare (g)	6.94	6.91	7.00	6.91	6.82
Weight of Water (g)	8.66	8.11	4.25	10.81	9.78
Weight of Dry Sample (g)	56.68	51.22	54.47	49.61	56.42
Water Content (%)	15.3	15.8	7.8	21.8	17.3

Lab ID Boring No.	022 B-2(MP2.8)	023 B-3(MP2.8)	024 B-3(MP2.8)	025 B-3(MP2.8)	026 B-1(MP9.3)
Depth (ft)	14.8	3.0	7.7	15.5	1.8
Sample No.	B-2-6	B-3-1	B-3-3	B-3-6	B-1-1
Tare Number	11	30	12	29	13
Wt. of Tare & Wet Sample (g)	59.77	61.97	75.65	70.16	56.19
Wt. of Tare & Dry Sample (g)	57.42	55.29	69.73	63.69	49.45
Weight of Tare (g)	6.86	6.82	6.92	6.82	6.96
Weight of Water (g)	2.35	6.68	5.92	6.47	6.74
Weight of Dry Sample (g)	50.56	48.47	62.81	56.87	42.49
Water Content (%)	4.6	13.8	9.4	11.4	15.9

Notes :

Tested By

PC

11/10/16

Checked By

TMP

Date 11/11/16

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

Date

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C (Modified to report Unit Weight)

This method does not report strain rate or deformation

Sample Prep and Conformance Verification: ASTM D4543-08

Client: Client Project: Project No.: Lab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-001		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP 2.8) 20.2-21.3 R-2 : As Received-Unpreser	ved
Specimen	Weight (g):	467.30			
SPECIMEN	N LENGTH (in)		SPE	CIMEN DIAMETER (in):	
	Reading 1:	4.00		Reading 1:	1.85
	Reading 2:	4.00		Reading 2:	1.85
	Reading 3:	4.00		Average:	1.85
	Average:	4.00		Area (in ²):	2.70
				L/D:	2.16
MOISTURE	<u>CONTENT</u>				
Tare Number	er:	874		Total Load (lb):	18,310
Wt. of Tare	& Wet Sample (g):	573.13	Uniaxial Comp	pressive Strength (psi):	6,790
Wt. of Tare	& Dry Sample (g):	567.38			
Weight of T	are (g):	110.37		Fracture Type:	Shear
Weight of W	Vet Sample (g):	462.76			
Sample Vol	ume (cm ³):	176.75	I	Rate of Loading (lb/sec):	136
Moisture Co	ontent (%):	1.26	-	Time to Break (min:sec):	2:14.35
Unit Wet W	eight (g/cm ³):	2.644	Devia	tion From Straightness ² :	> 0.02
Unit Wet W	eight (pcf):	165.0			
Unit Dry W	eight (g/cm ³):	2.611	AXIAL: Fail	TOP: Pass	BOTTOM: Pass
Unit Dry W	eight (pcf):	162.9			

Physical Description: Gray Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Deviation from straightness, Procedure A of ASTM D 4543-08 Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail
- 3) Temperature is laboratory room temperature.
- 4) Geotechnics Equipment Used: G788 Compression Tester,
- G1122 Digital Calipers, G1380 Dial Guage,
- G1557 Straight Edge, G1571 Feeler Gauge,

G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	AJD	Date:	11/16/16	Checked By:	CLK	Date: 11/17/16
page 1 of 1	DCN: CT45AUWT; Re	evision No.: 1e Revision Date:	8/25/15			

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-002 Boring No.: B-1 (MP 2.8) Depth (ft): 20.2-21.3 Sample No.: R2 Test 1 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	AMPLE DIMENS	SIONS		MOISTURE CONTENT	
Length (in):	1.305	Top Diam (in):	1.850	Tare No.:	3055
Length (in):	1.305	Mid Diam (in):	1.850	Weight Tare & Wet Sample (g):	157.36
Length (in):	1.306	Bot Diam (in):	1.850	Weight of Tare & Dry Sample (g):	155.75
Avg. Length (in):	Avg. Length (in): 1.305		1.850	Weight of Tare (g):	6.77
		Area (in2):	2.688	Moisture (%):	1.1
Thickness to Diame	eter Ratio:	0.71 S	Shall be app	roximately 0.2 - 0.75	09.0
weight of Frepareu	r Cymruer (g).	150.0		Rate of Loading (lb/sec).	50.0
Location/Type of Fa	ailure:	Center / Split			5000
				Time to Break (min:sec):	0:37.44
		LOAD (Ib)		Splitting Tensile Strength (psi)	

3670

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	crete Date: 8/30/	12 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-003 Boring No.: B-1 (MP 2.8) Depth (ft): 20.2-21.3 Sample No.: R2 Test 2 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	AMPLE DIMENS	SIONS		MOISTURE CONTENT	
Length (in): Length (in):	1.323 1.323	Top Diam (in): Mid Diam (in):	1.847 1.847	Tare No.: Weight Tare & Wet Sample (g):	3175 158.72
Length (in):	1.321	Bot Diam (in):	1.850	Weight of Tare & Dry Sample (g):	157.21
Avg. Length (in): 1.322		Avg. Diam (in): Area (in2):	1.848 2.682	Moisture (%):	6.76 1.0
Thickness to Diame	eter Ratio:	0.72	Shall be app	roximately 0.2 - 0.75	
Weight of Prepared	l Cylinder (g):	152.2		Rate of Loading (lb/sec):	94.0
Logation/Turno of Fr	ailuro	Ocertary / Ocelit		Rate of Loading (Ib/min):	5640
Location/Type of Fa	anure.	Center / Split		Time to Break (min:sec):	0:35.87
		LOAD (Ib)		Splitting Tensile Strength (psi)	
		2290		000 EE	

3380

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Con	crete Date: 8/30/	12 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-004 Boring No.: B-1 (MP 2.8) Depth (ft): 20.2-21.3 Sample No.: R2 Test 3 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL S	AMPLE DIMENS	SIONS		MOISTURE CONTENT	
Length (in): 1.286 Length (in): 1.287 Length (in): 1.285 Avg. Length (in): 1.286		Top Diam (in): Mid Diam (in): Bot Diam (in): Avg. Diam (in):	1.833 1.823 1.831 1.829 2.627	Tare No.: Weight Tare & Wet Sample (g): Weight of Tare & Dry Sample (g): Weight of Tare (g): Moisture (%):	2982 154.09 152.70 6.77
Thickness to Diame	eter Ratio:	0.70	Shall be app	roximately 0.2 - 0.75	1.0
Weight of Prepared	l Cylinder (g):	147.9		Rate of Loading (lb/sec):	71.0
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec):	0:41.6
		LOAD (Ib)		Splitting Tensile Strength (psi)	

2950

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	rete Date: 8/30/	12 Revision: 0				

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C (Modified to report Unit Weight)

This method does not report strain rate or deformation

Sample Prep and Conformance Verification: ASTM D4543-08

Client: Client Project: Project No.: Lab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-005		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-3 (MP 2.8) 20.3-21.3 R-1 : As Received-Unpreser	ved
Specimen	Weight (g):	433.80			
SPECIMEN	LENGTH (in)		SPE	CIMEN DIAMETER (in):	
	Reading 1:	3.99		Reading 1:	1.86
	Reading 2:	3.99		Reading 2:	1.86
	Reading 3:	3.99		Average:	1.86
	Average:	3.99		Area (in ²):	2.72
				L/D:	2.14
MOISTURE	<u>CONTENT</u>				
Tare Numbe	er:	907		Total Load (lb):	23,980
Wt. of Tare a	& Wet Sample (g):	533.54	Uniaxial Comp	pressive Strength (psi):	8,810
Wt. of Tare a	& Dry Sample (g):	532.76			
Weight of Ta	are (g):	110.40		Fracture Type:	Cone Split
Weight of W	et Sample (g):	423.14			
Sample Volu	ume (cm ³):	177.89	I	Rate of Loading (lb/sec):	123
Moisture Co	ntent (%):	0.18	-	Time to Break (min:sec):	3:15.53
Unit Wet We	eight (g/cm ³):	2.439	Devia	tion From Straightness ² :	>0.02
Unit Wet We	eight (pcf):	152.2			
Unit Dry We	eight (g/cm ³):	2.434	AXIAL: Fail	TOP: Pass	BOTTOM: Pass
Unit Dry We	eight (pcf):	151.9			

Physical Description: Gray Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Deviation from straightness, Procedure A of ASTM D 4543-08 Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail
- 3) Temperature is laboratory room temperature.
- 4) Geotechnics Equipment Used: G788 Compression Tester,
- G1122 Digital Calipers, G1380 Dial Guage,
- G1557 Straight Edge, G1571 Feeler Gauge,

G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	AJD	Date: 11/16/16	Checked By:	CLK	Date: 11/17/16
page 1 of 1	DCN: CT45AUWT; Revision	No.: 1e Revision Date: 8/25/15			

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-006 Boring No.: B-3 (MP 2.8) Depth (ft): 20.3-21.3 Sample No.: R1 Test 1 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	AMPLE DIMENS	SIONS		MOISTURE CONTENT
Length (in): Length (in): Length (in): Avg. Length (in):	1.269 1.270 1.270 1.270	Top Diam (in): Mid Diam (in): Bot Diam (in): Avg. Diam (in): Area (in2):	1.860 1.860 1.862 1.861 2.719	Tare No.: 3127 Weight Tare & Wet Sample (g): 144.33 Weight of Tare & Dry Sample (g): 143.86 Weight of Tare (g): 6.77 Moisture (%): 0.3
Thickness to Diame	eter Ratio:	0.68	Shall be app	proximately 0.2 - 0.75
Weight of Prepared	Cylinder (g):	139.8		Rate of Loading (lb/sec): 77.0
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec): 0:31.41
		LOAD (Ib)		Splitting Tensile Strength (psi)

2410

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	rete Date: 8/30/	12 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-007 Boring No.: B-3 (MP 2.8) Depth (ft): 20.3-21.3 Sample No.: R1 Test 2 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL S	AMPLE DIMENS	SIONS		MOISTURE CONTENT	
Length (in): Length (in): Length (in): Avg. Length (in):	1.287 1.286 1.284 1.286	Top Diam (in): Mid Diam (in): Bot Diam (in): Avg. Diam (in): Area (in2):	1.860 1.861 1.862 1.861 2.720	Tare No.: Weight Tare & Wet Sample (g): Weight of Tare & Dry Sample (g): Weight of Tare (g): Moisture (%):	3220 146.65 146.14 6.53 0.4
Thickness to Diame	eter Ratio:	0.69	Shall be app	roximately 0.2 - 0.75	
Weight of Prepared	l Cylinder (g):	141.8		Rate of Loading (lb/sec):	70.0 4200
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec):	0:35.37
		LOAD (Ib)		Splitting Tensile Strength (psi)	

2460

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Con	crete Date: 8/30/	12 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-008 Boring No.: B-3 (MP 2.8) Depth (ft): 20.3-21.3 Sample No.: R1 Test 3 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SAMPLE DIMENSIONS				MOISTURE CONTENT	
Length (in): Length (in): Length (in): Ava, Length (in):	1.243 1.244 1.238 1.242	Top Diam (in): Mid Diam (in): Bot Diam (in): Avg, Diam (in):	1.860 1.862 1.857 1.860	Tare No.: Weight Tare & Wet Sample (g): Weight of Tare & Dry Sample (g): Weight of Tare (g):	3021 139.94 139.35 6.79
5 5 ()		Area (in2):	2.716	Moisture (%):	0.4
Thickness to Diame	eter Ratio:	0.67 S	Shall be app	roximately 0.2 - 0.75	
Weight of Prepared	l Cylinder (g):	133.5		Rate of Loading (lb/sec):	49.0
				Rate of Loading (lb/min):	2940
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec):	0:49.53
		LOAD (Ib)		Splitting Tensile Strength (psi)	

2410

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Con	crete Date: 8/30/	12 Revision: 0				

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-018 Boring No.:B-1 (MP 2.8)Depth (ft):7.0Sample No.:B-1-3Soil Color:Reddish Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-018 Boring No.:B-1 (MP 2.8)Depth (ft):7.0Sample No.:B-1-3Soil Color:Reddish Brown

PERCENT SAND

			USDA SUMMARY	
Particle	Percent		Actual	Corrected % of Minus 2.0 mm
Size (mm)	Finer		Percentage	material for USDA Classification
		Gravel	0.24	
2	99.76	Sand	6.96	6.98
0.05	92.80	Silt	52.16	52.28
0.002	40.64	Clay	40.64	40.74

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-1 (MP 2.8)
Client Reference:	ACP TXG0007	Depth (ft):	7.0
Project No.:	2016-527-001	Sample No.:	B-1-3
Lab ID:	2016-527-001-018	Soil Color:	Reddish Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material	
Tare No :	15/1	Tare No :	ΝΑ
Mat of Tana 8 Wet Complet (a):	1041	Mainte af Tana & Wat Cample (a):	
vvt. of Tare & vvet Sample (g):	396.35	vveight of Tare & vvet Sample (g):	0.00
Wt. of Tare & Dry Sample (g):	396.35	Weight of Tare & Dry Sample (g):	0.00
Weight of Tare (g):	146.94	Weight of Tare (g):	0.00
Weight of Water (g):	0.00	Weight of Water (g):	0.00
Weight of Dry Soil (g):	249.41	Weight of Dry Soil (g):	0.00
Moisture Content (%):	0.0	Moisture Content (%):	0.0
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	249.41
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	236.11
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	13.30
Dry Weight of + 3/4" Sample (g):	0.00		
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00		0.00	0.00	100.00	100.0
3/8"	9.5	0.00		0.00	0.00	100.00	100.0
#4	4.75	0.00		0.00	0.00	100.00	100.0
#10	2	0.60		0.24	0.24	99.76	99.8
#20	0.85	3.39	(**)	1.36	1.60	98.40	98.4
#40	0.425	3.45		1.38	2.98	97.02	97.0
#60	0.25	2.45		0.98	3.97	96.03	96.0
#100	0.15	1.74		0.70	4.66	95.34	95.3
#140	0.106	0.87		0.35	5.01	94.99	95.0
#200	0.075	0.80		0.32	5.33	94.67	94.7
Pan	-	236.11		94.67	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16
					-		

page 3 of 4 DCN: CT-S73J, Dignie d Closs Linka response 6913 & 7928-J

B-1 (MP 2.8)

Reddish Brown

7.0 B-1-3

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:
Client Reference:	ACP TXG0007	Depth (ft):
Project No.:	2016-527-001	Sample No.:
Lab ID:	2016-527-001-018	Soil Color:

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	57.0	22.3	5.97	6.8	0.0345	96.2	91.1
2	56.0	22.3	5.97	7.0	0.0247	94.3	89.3
4	55.0	22.3	5.97	7.2	0.0177	92.4	87.5
15	50.0	22.3	5.97	8.1	0.0097	83.0	78.6
30	46.5	22.3	5.97	8.7	0.0071	76.4	72.3
60	41.5	22.3	5.97	9.6	0.0053	67.0	63.4
240	32.5	22.4	5.93	11.2	0.0029	50.1	47.4
1440	23.5	22.7	5.82	12.8	0.0012	33.3	31.6

Soil Specimen Data

Tare No.:	961	Percent Finer than # 200:	94.67
Wt. of Tare & Dry Material (g):	158.28		
Weight of Tare (g):	100.83	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	52.45		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 358
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ΤО

Tested By

0

11/16/16

Date

Checked By

KC

Date

0

11/21/16

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID: Note: The USCS sym sieve material. See the	Geosyntec C ACP TXG000 2016-527-00 2016-527-00 bol used with ta Sieve and Hy	onsultants 07 1 1-018 his test refe	, Inc. ers only to Analysis" d	S the minus N raph page f	Boring No.: Depth (ft): Sample No.: Soil Description: No. 40	B-1 (MP 2.8 7.0 B-1-3 REDDISH B (Minus No. 40 material desc) ROWN LEA sieve material, c ription	N CLAY Air dried)
As Receiv	ed Moistur	e Conter	nt		Liaui	d Limit Te	st	
AS	TM D2216-10			1	2	3	M	
Tare Number		10	2	115	316	394	U	
Wt of Tare & Wet Sa	mple (a).	66	24	38.92	39.00	34 74	L	
Wt. of Tare & Dry Sa	mple (a):	58.	13	32.72	32.89	28.68	T	
Weight of Tare (g):		6.9)1	18.63	18.34	14.06	i	
Weight of Water (g):		8.1	1	6.2	6.1	6.1	P	
Weight of Dry Sample	e (a):	51	.2	14.1	14.6	14.6	0	
Was As Received MC	C Preserved:	Ye	S				I	
Moisture Content (%	6):	15	.8	44.0	42.0	41.5	Ν	
Number of Blows:	. ,,			15	24	31	Т	
							-	
Plastic Limit Tes	t	1	2	Range		Test Resu	ults	
Tare Number:		183	131			l iquid l imi	t (%)·	42
Wt of Tare & Wet Sa	mple (a):	25.64	26.06				t (70).	72
Wt. of Tare & Dry Sa	mple (g):	24 45	24.88			Plastic I im	it (%)·	23
Weight of Tare (g):	(g).	19.30	19 70					20
Weight of Water (g):		12	12			Plasticity Ir	ndex (%):	19
Weight of Dry Sample	. (a).	5.2	5.2					
troigin or bry campi	9/.	0.2	0.2			USCS Sym	bol:	CL
Moisture Content (%	6):	23.1	22.8	0.3				
Note: The acceptable	e range of the t	wo Moistu	re contents	is ± 2.6				
	Flow Curve				PI	asticity Cha	rt	
50				60		i		
45				50			;	
		⊗₀		§ 40	CL	, C		
utent () xapu				
ater C				sticity			МН	
₿ 30 				e 20				

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13 S:

11/14/16

100

10

Number of Blows

Date

25

20

Tested By

1

RAL

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

11/15/16

80

100

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

Checked By

10

0

0

CL- ML

ML

40

Liquid Limit (%)

Date

60

20

TMP

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-020 Boring No.:B-2 (MP 2.8)Depth (ft):2.5Sample No.:B-2-1Soil Color:Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-020 Boring No.:B-2 (MP 2.8)Depth (ft):2.5Sample No.:B-2-1Soil Color:Brown

PERCENT SAND

USDA SUMMARY									
Particle	Percent		Actual	Corrected % of Minus 2.0 mm					
Size (mm)	Finer		Percentage	material for USDA Classification					
		Gravel	2.19						
2	97.81	Sand	24.74	25.30					
0.05	73.07	Silt	44.48	45.48					
0.002	28.58	Clay	28.58	29.22					

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 2.8)
Client Reference:	ACP TXG0007	Depth (ft):	2.5
Project No.:	2016-527-001	Sample No.:	B-2-1
Lab ID:	2016-527-001-020	Soil Color:	Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material				
Tare No ·	1472	Tare No :	NA			
Wt_of Tare & Wet Sample (g):	417.01	Weight of Tare & Wet Sample (g)	0.00			
Wt of Tare & Dry Sample (g):	368 19	Weight of Tare & Dry Sample (g):	0.00			
Weight of Tare (g):	144.05	Weight of Tare (g):	0.00			
Weight of Water (g):	48.82	Weight of Water (g):	0.00			
Weight of Dry Soil (g):	224.14	Weight of Dry Soil (g):	0.00			
Moisture Content (%):	21.8	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	224.14			
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	170.47			
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	53.67			
Dry Weight of + 3/4" Sample (g):	0.00	<u> </u>				
Total Dry Waight of Sample (g)	0.0					

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00		0.00	0.00	100.00	100.0
3/8"	9.5	0.00		0.00	0.00	100.00	100.0
#4	4.75	0.48		0.21	0.21	99.79	99.8
#10	2	4.43		1.98	2.19	97.81	97.8
#20	0.85	5.28	(**)	2.36	4.55	95.45	95.5
#40	0.425	9.60		4.28	8.83	91.17	91.2
#60	0.25	14.07		6.28	15.11	84.89	84.9
#100	0.15	10.49		4.68	19.79	80.21	80.2
#140	0.106	4.44		1.98	21.77	78.23	78.2
#200	0.075	4.88		2.18	23.94	76.06	76.1
Pan	-	170.47		76.06	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dynted Classifiantes 06-527-001 ACP TXG0007\draft\2016-527-001-020 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 2.8)
Client Reference:	ACP TXG0007	Depth (ft):	2.5
Project No.:	2016-527-001	Sample No.:	B-2-1
Lab ID:	2016-527-001-020	Soil Color:	Brown

Elapsed I Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	57.5	22.3	5.97	6.7	0.0342	92.4	70.3
2	55.0	22.3	5.97	7.2	0.0250	87.9	66.9
4	52.5	22.3	5.97	7.6	0.0182	83.4	63.5
15	45.0	22.3	5.97	9.0	0.0102	70.0	53.2
30	40.0	22.3	5.97	9.9	0.0076	61.0	46.4
60	37.5	22.3	5.97	10.3	0.0055	56.5	43.0
240	29.5	22.4	5.93	11.7	0.0029	42.3	32.1
1440	23.5	22.7	5.82	12.8	0.0012	31.7	24.1

Soil Specimen Data

Tare No.:	967	Percent Finer than # 200:	76.06
Wt. of Tare & Dry Material (g):	160.21		
Weight of Tare (g):	100.06	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	55.15		

Notes: Hydrometer test is performed on - # 200 sieve material.

G- 1159
G- 353
G- 1505
G- 1057
G- 1718
No

ТΟ

Tested By

0

11/16/16

Date

Checked By

KC

11/21/16

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID: Note: The USCS syr sieve material. See th	Geosyntec C ACP TXG00 2016-527-00 2016-527-00 mbol used with t the "Sieve and Hy	consultants 07 1 1-020 his test ref	s, Inc. Fers only to Analysis" g	E Soi the minus No raph page for	Boring No.: Depth (ft): Sample No.: I Description: A 40 The complete	B-2 (MP 2.8 2.5 B-2-1 BROWN LE (Minus No. 40 <i>material des</i>	3) EAN CLAY) sieve material scription .	, Air dried)
As Recei	ved Moistur	e Contei	nt		Liqu	d Limit Ie	est	
AS	STM D2216-10			1	2	3	М	
Tare Number:		2'	1	250	162	246	U	
Wt. of Tare & Wet S	ample (g):	67.	33	38.15	37.84	36.08	L	
Wt. of Tare & Dry Sa	ample (g):	56.	52	32.25	32.23	30.91	Т	
Weight of Tare (g):		6.9	91	17.51	17.50	17.15	I	
Weight of Water (g):		10	.8	5.9	5.6	5.2	Р	
Weight of Dry Samp	le (g):	49	.6	14.7	14.7	13.8	0	
Was As Received M	IC Preserved:	Ye	es				I	
Moisture Content (%):	21	.8	40.0	38.1	37.6	N	
Number of Blows:				18	26	35	T	
Plastic Limit Te	st	1	2	Range		Test Res	ults	
				J				
Tare Number:		1106	25			Liquid Lim	it (%):	39
Wt. of Tare & Wet S	ample (g):	23.98	25.05					
Wt. of Tare & Dry Sa	ample (g):	22.90	23.96			Plastic Lim	nit (%):	21
Weight of Tare (g):		17.82	18.91					
Weight of Water (g):		1.1	1.1			Plasticity I	ndex (%):	18
Weight of Dry Samp	le (g):	5.1	5.1			_		
						USCS Sym	ibol:	CL
Moisture Content (%):	21.3	21.6	-0.3				
Note: The acceptabl	le range of the t	wo Moistu	re contents	s is ± 2.6				
	Flow Curve				Ρ	lasticity Cha	art	
45				60		a		
				-				
40				50	0			<u> </u>
				-	CL		ЭН	
(%)				\$ 40				
t 35				ěx –				
onte				pul 30		/ /	-	
ŭ i l				نز ³⁰	,		NALI	
06 at				stic				
≥ .				e 20				
				-				
25				10	. · /			
					<u>·</u>			
20								
1	10		100	0	20 4			100
	Number of Blo	ows			20 40 Lia	uid Limit (%)	80	100
				CL- IV/L	Eide			

 Tested By
 RAL
 Date
 11/16/16
 Checked By
 TMP
 Date
 11/17/16

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-022 Boring No.:B-2 (MP 2.8)Depth (ft):14.8Sample No.:B-2-6Soil Color:Brown

page 1 of 2 DCN: CT-S73J, Dynied Oldstulian RE2006-527-001 ACP TXG0007\draft\2016-527-001-022 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-022 Boring No.:B-2 (MP 2.8)Depth (ft):14.8Sample No.:B-2-6Soil Color:Brown

PERCENT SAND

USDA SUMMARY							
Particle	Percent		Actual	Corrected % of Minus 2.0 mm			
Size (mm)	Finer		Percentage	material for USDA Classification			
		Gravel	32.64				
2	67.36	Sand	27.16	40.32			
0.05	40.20	Silt	29.85	44.31			
0.002	10.36	Clay	10.36	15.37			

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 2.8)
ACP TXG0007	Depth (ft):	14.8
2016-527-001	Sample No.:	B-2-6
2016-527-001-022	Soil Color:	Brown
	Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-022	Geosyntec Consultants, Inc.Boring No.:ACP TXG0007Depth (ft):2016-527-001Sample No.:2016-527-001-022Soil Color:

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material				
Tare No.:	1424	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	406.24	Weight of Tare & Wet Sample (g):	0.00			
Wt. of Tare & Dry Sample (g):	406.24	Weight of Tare & Dry Sample (g):	0.00			
Weight of Tare (g):	145.76	Weight of Tare (g):	0.00			
Weight of Water (g):	0.00	Weight of Water (g):	0.00			
Weight of Dry Soil (g):	260.48	Weight of Dry Soil (g):	0.00			
Moisture Content (%):	0.0	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	260.48			
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	123.87			
Wet Weight of +3/4" Sample (g):	6.59	Weight of plus #200 Material (g):	136.61			
Dry Weight of + 3/4" Sample (g):	6.59					
Total Dry Weight of Sample (g):	6.6	J - Factor (Percent Finer than 3/4"):	NA			

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	6.59		2.53	2.53	97.47	97.5
1/2"	12.5	7.52		2.89	5.42	94.58	94.6
3/8"	9.5	13.69		5.26	10.67	89.33	89.3
#4	4.75	27.02		10.37	21.05	78.95	79.0
#10	2	30.19		11.59	32.64	67.36	67.4
#20	0.85	20.32	(**)	7.80	40.44	59.56	59.6
#40	0.425	10.07		3.87	44.30	55.70	55.7
#60	0.25	5.77		2.22	46.52	53.48	53.5
#100	0.15	6.09		2.34	48.86	51.14	51.1
#140	0.106	5.85		2.25	51.10	48.90	48.9
#200	0.075	10.09		3.87	54.98	45.02	45.0
Pan	-	123.87		47.55	102.53	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dignied Conscienting RES20 06-527-001 ACP TXG0007\draft\2016-527-001-022 Grain SieveHyd J D6913 DONE.xlsjPrint Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 2.8)
Client Reference:	ACP TXG0007	Depth (ft):	14.8
Project No.:	2016-527-001	Sample No.:	B-2-6
Lab ID:	2016-527-001-022	Soil Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	36.5	22.3	5.97	10.5	0.0428	85.2	38.4
2	32.5	22.3	5.97	11.2	0.0313	74.0	33.3
4	29.0	22.3	5.97	11.8	0.0227	64.3	28.9
15	24.0	22.3	5.97	12.7	0.0122	50.3	22.7
30	21.5	22.3	5.97	13.2	0.0088	43.3	19.5
65	18.5	22.3	5.97	13.7	0.0061	35.0	15.7
240	16.0	22.4	5.93	14.2	0.0032	28.1	12.6
1440	12.5	22.7	5.82	14.8	0.0013	18.6	8.4

Soil Specimen Data

Tare No.:	947	Percent Finer than # 200:	45.02
Wt. of Tare & Dry Material (g):	140.04		
Weight of Tare (g):	99.60	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	35.44		

Notes: Hydrometer test is performed on - # 200 sieve material.

G- 1159
G- 199
G- 1505
G- 1057
G- 1718
No

ΤО

Tested By

0

Date 11/16/16 Checked By

KC

11/21/16

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID:	Geosyntec (ACP TXG00 2016-527-0(2016-527-0(Consultants 07 01 01-022	s, Inc.	Si the minus N	Boring No.: Depth (ft): Sample No.: oil Description:	B-2 (MP 2.8 14.8 B-2-6 : BROWN LE) AN CLAY	
sieve material. See th	e "Sieve and H	vdrometer	ers only to Analysis" (araph page fo	o. 40 or the complete	(Minus No. 40	sieve material	, All dried)
As Receiv	ved Moistur	e Conte	nt		Liqu	id Limit Te	st	
AS	TM D2216-10	• • • • • • • • •		1	2	3	M	
Tare Number:		1	1	200	1101	150	U	
Wt. of Tare & Wet Sa	ample (g):	59.	77	33.74	33.96	35.30	L	
Wt. of Tare & Dry Sa	mple (g):	57.	42	30.03	30.32	31.80	т	
Weight of Tare (g):		6.8	36	18.54	18.21	19.77	I	
Weight of Water (g):		2.	4	3.7	3.6	3.5	Р	
Weight of Dry Sampl	e (g):	50	.6	11.5	12.1	12.0	0	
Was As Received M	C Preserved:	Ye	es				1	
Moisture Content (%	%):	4.	6	32.3	30.1	29.1	Ν	
Number of Blows:	-			16	25	35	Т	
Directio Limit Ter	.4	4		Danaa		Teet Deer		
Plastic Limit Tes	51	1	2	Range		lest Rest	lits	
Tare Number:		176	236			Liquid Limi	t (%):	30
Wt. of Tare & Wet Sa	ample (g):	25.87	24.64					
Wt. of Tare & Dry Sa	mple (g):	24.86	23.66			Plastic Lim	it (%):	19
Weight of Tare (g):		19.42	18.51					
Weight of Water (g):	<i>.</i>	1.0	1.0			Plasticity In	ndex (%):	11
Weight of Dry Sampl	e (g):	5.4	5.2					01
Moisture Content (%	%):	18.6	19.0	-0.5		USCS Sym	001:	CL
Note: The acceptable	e range of the	two Moistu	re content	s is ± 2.6				
	Flow Curve				Р	lasticity Cha	rt	
34				60				
		_						
32				50	CL	, , , , , , , , , , , , , , , , , , ,	н	
G ³⁰ → →	<u> </u>		++++					
i (%				క్ర ⁴⁰		r i		
28	<u>+ </u>		+ $+$ $+$ $+$ $+$ $+$ $+$	de				
ō E 🗌				× 30				

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

100

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-023 Boring No.:B-3 (MP 2.8)Depth (ft):3.0Sample No.:B-3-1Soil Color:Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-023 Boring No.:B-3 (MP 2.8)Depth (ft):3.0Sample No.:B-3-1Soil Color:Brown

PERCENT SAND

USDA SUMMARY					
Particle	Percent		Actual	Corrected % of Minus 2.0 mm	
Size (mm)	Finer		Percentage	material for USDA Classification	
		Gravel	24.11		
2	75.89	Sand	21.62	28.49	
0.05	54.27	Silt	32.93	43.40	
0.002	21.33	Clay	21.33	28.11	

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 2.8)
Client Reference:	ACP TXG0007	Depth (ft):	3.0
Project No.:	2016-527-001	Sample No.:	B-3-1
Lab ID:	2016-527-001-023	Soil Color:	Brown

Moisture Content of Passing 3/4" Material		Water Content of Retained 3/4" Material	
Tare No.:	1511	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	468.94	Weight of Tare & Wet Sample (g):	0.00
Wt. of Tare & Dry Sample (g):	468.94	Weight of Tare & Dry Sample (g):	0.00
Weight of Tare (g):	147.52	Weight of Tare (g):	0.00
Weight of Water (g):	0.00	Weight of Water (g):	0.00
Weight of Dry Soil (g):	321.42	Weight of Dry Soil (g):	0.00
Moisture Content (%):	0.0	Moisture Content (%):	0.0
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	321.42
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	234.08
Wet Weight of +3/4" Sample (g):	51.87	Weight of plus #200 Material (g):	87.34
Dry Weight of + 3/4" Sample (g):	51.87		
Total Dry Weight of Sample (g):	51.9	J - Factor (Percent Finer than 3/4"):	NA

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	35.09		10.92	10.92	89.08	89.1
3/4"	19	16.78		5.22	16.14	83.86	83.9
1/2"	12.5	4.77		1.48	17.62	82.38	82.4
3/8"	9.5	0.00		0.00	17.62	82.38	82.4
#4	4.75	4.29		1.33	18.96	81.04	81.0
#10	2	16.57		5.16	24.11	75.89	75.9
#20	0.85	12.77	(**)	3.97	28.08	71.92	71.9
#40	0.425	10.00		3.11	31.20	68.80	68.8
#60	0.25	10.13		3.15	34.35	65.65	65.7
#100	0.15	12.38		3.85	38.20	61.80	61.8
#140	0.106	11.16		3.47	41.67	58.33	58.3
#200	0.075	5.27		1.64	43.31	56.69	56.7
Pan	-	234.08		72.83	116.14	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dynied Cossultantes 2006-527-001 ACP TXG0007\draft\2016-527-001-023 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 2.8)
Project No.:	2016-527-001	Sample No.:	B-3-1
Lab ID:	2016-527-001-023	Soil Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	53.5	22.3	5.97	7.4	0.0360	92.3	52.3
2	51.0	22.3	5.97	7.9	0.0262	87.4	49.6
4	48.5	22.3	5.97	8.3	0.0191	82.6	46.8
15	42.5	22.3	5.97	9.4	0.0105	70.9	40.2
30	38.5	22.3	5.97	10.1	0.0077	63.1	35.8
61	34.5	22.3	5.97	10.8	0.0056	55.4	31.4
240	28.0	22.4	5.93	12.0	0.0030	42.8	24.3
1440	22.0	22.7	5.82	13.1	0.0013	31.4	17.8

Soil Specimen Data

Tare No.:	1092	Percent Finer than # 200:	56.69
Wt. of Tare & Dry Material (g):	154.80		
Weight of Tare (g):	98.86	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	50.94		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 209
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ΤО

Tested By

Date 11/16/16 Checked By

KC

11/21/16

0

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2016-527-001Lab ID:2016-527-001-023Note: The USCS symbol used with this test refers only to solve meterial.				Boring No.: B-3 (MP 2.8) Depth (ft): 3.0 Sample No.: B-3-1 Soil Description: BROWN LEAN CLAY (Minus No. 40 sieve material, Air dried)				
As Receive	ed Moistur	e Conter	nt		Li	quid Limit Te	st	
AST	M D2216-10			1	2	. 3	Μ	
Tare Number:		30)	161	101	195	U	
Wt. of Tare & Wet Sar	nple (g):	61.9	97	38.35	38.41	37.52	L	
Wt. of Tare & Dry Sam	nple (g):	55.2	29	32.93	33.17	32.40	т	
Weight of Tare (g):		6.8	2	17.84	18.08	17.26	I	
Weight of Water (g):		6.7	7	5.4	5.2	5.1	Р	
Weight of Dry Sample	(g):	48.	5	15.1	15.1	15.1	0	
Was As Received MC	Preserved:	Ye	S				I	
Moisture Content (%):	13.	8	35.9	34.7	33.8	Ν	
Number of Blows:				15	22	34	т	
Plastic Limit Test	t	1	2	Range	•	Test Resu	ults	
Tare Number:		3	220			Liquid Limi	t (%):	35
Wt. of Tare & Wet Sar	nple (g):	25.27	25.69					
Wt. of Tare & Dry San	nple (g):	24.20	24.61			Plastic Lim	it (%):	20
Weight of Tare (g):		18.89	19.27					
Weight of Water (g):		1.1	1.1			Plasticity In	idex (%):	15
Weight of Dry Sample	(g):	5.3	5.3					
	、	~~~	~~~	• •		USCS Sym	bol:	CL
Moisture Content (%)):	20.2	20.2	-0.1				
Note: The acceptable	range of the t	wo ivioistur	e contents	s IS ± 2.6		Dis stisity Obs		
	Flow Curve					Plasticity Cha	rt	
³⁸				⁶⁰				
				-				
30				50				
34		10		00	С		н 🖊	
8 ³²				<u>گ</u> 40				
5 30				de l				
L L L				⊆ ₃₀		: 		
b 28				icit			МН	
26 A				oc last	;			
				₽ 20				
24	╎╎╎╎╎			ĺ		×		
22				10				
				ł				
20					/			

 Tested By
 RAL
 Date
 11/14/16
 Checked By
 TMP
 Date
 11/15/16

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13

100

1

10

Number of Blows

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

80

100

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

0

CL- ML

20

40

Liquid Limit (%)

60

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-025 Boring No.:B-3 (MP 2.8)Depth (ft):15.5Sample No.:B-3-6Soil Color:Dark Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-025 Boring No.:B-3 (MP 2.8)Depth (ft):15.5Sample No.:B-3-6Soil Color:Dark Brown

PERCENT SAND

USDA SUMMARY								
Particle	Percent		Actual	Corrected % of Minus 2.0 mm				
Size (mm)	Finer		Percentage	material for USDA Classification				
		Gravel	11.21					
2	88.79	Sand	30.24	34.06				
0.05	58.55	Silt	31.56	35.55				
0.002	26.99	Clay	26.99	30.40				

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 2.8)
Client Reference:	ACP TXG0007	Depth (ft):	15.5
Project No.:	2016-527-001	Sample No.:	B-3-6
Lab ID:	2016-527-001-025	Soil Color:	Dark Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material		
Tare No.:	1480	Tare No.:	NA	
Wt. of Tare & Wet Sample (g):	464.34	Weight of Tare & Wet Sample (g):	0.00	
Wt. of Tare & Dry Sample (g):	430.12	Weight of Tare & Dry Sample (g):	0.00	
Weight of Tare (g):	147.84	Weight of Tare (g):	0.00	
Weight of Water (g):	34.22	Weight of Water (g):	0.00	
Weight of Dry Soil (g):	282.28	Weight of Dry Soil (g):	0.00	
Moisture Content (%):	12.1	Moisture Content (%):	0.0	
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	282.28	
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	170.33	
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	111.95	
Dry Weight of + 3/4" Sample (g):	0.00			
Total Dry Weight of Sample (g)	0.0	I - Eactor (Percent Finer than 3//").	ΝΔ	

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	8.30		2.94	2.94	97.06	97.1
3/8"	9.5	0.00		0.00	2.94	97.06	97.1
#4	4.75	3.76		1.33	4.27	95.73	95.7
#10	2	19.57		6.93	11.21	88.79	88.8
#20	0.85	32.27	(**)	11.43	22.64	77.36	77.4
#40	0.425	23.14		8.20	30.83	69.17	69.2
#60	0.25	12.83		4.55	35.38	64.62	64.6
#100	0.15	7.09		2.51	37.89	62.11	62.1
#140	0.106	3.03		1.07	38.96	61.04	61.0
#200	0.075	1.96		0.69	39.66	60.34	60.3
Pan	-	170.33		60.34	100.00	-	-

(*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample Notes : (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	HL	Date	11/14/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dynted 0/05/stutents20/06-527-001 ACP TXG0007/draft/2016-527-001-025 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 2.8)
Project No.:	2016-527-001	Sample No.:	15.5 B-3-6
Lab ID:	2016-527-001-025	Soil Color:	Dark Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	33.0	22.3	5.97	11.1	0.0441	96.1	58.0
2	32.0	22.3	5.97	11.3	0.0314	92.6	55.9
4	31.5	22.3	5.97	11.4	0.0223	90.8	54.8
15	29.5	22.3	5.97	11.7	0.0117	83.7	50.5
30	28.0	22.3	5.97	12.0	0.0084	78.3	47.3
64	25.5	22.3	5.97	12.5	0.0058	69.4	41.9
240	21.5	22.4	5.93	13.2	0.0031	55.4	33.4
1440	15.5	22.7	5.82	14.3	0.0013	34.4	20.8

Soil Specimen Data

Tare No.:	1466	Percent Finer than # 200:	60.34
Wt. of Tare & Dry Material (g):	142.40		
Weight of Tare (g):	109.59	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	27.81		

Notes: Hydrometer test is performed on - # 200 sieve material.

G- 1159
G- 771
G- 1505
G- 1057
G- 1718
No

ТΟ

Tested By

0

11/16/16

Date

Checked By

KC

11/21/16

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID:	Geosyntec C ACP TXG00 2016-527-00 2016-527-00	Consultants 07 1 1-025	s, Inc.	S	Boring No.: Depth (ft): Sample No.: pil Description:	B-3 (MP 2.8) 15.5 B-3-6 DARK BRO\) WN I FAN C	
Note: The USCS sym	bol used with t	his test ref	ers only to	the minus N	o. 40	(Minus No. 40	sieve material.	Air dried)
sieve material. See the	e "Sieve and Hy	/drometer	Analysis" g	graph page fo	or the complete	material desc	ription .	
As Receiv	ed Moistur	e Conte	nt		Liqui	d Limit Te	st	
ASTM D2216-10				1	2 '	3	Μ	
Tare Number:		2	9	117	213	2101	U	
Wt. of Tare & Wet Sa	mple (g):	70.	16	42.51	39.96	41.61	L	
Wt. of Tare & Dry Sar	mple (g):	63.	69	37.19	34.72	35.69	Т	
Weight of Tare (g):		6.8	32	20.18	18.56	18.45	I.	
Weight of Water (g):		6.	5	5.3	5.2	5.9	Р	
Weight of Dry Sample	e (g):	56	.9	17.0	16.2	17.2	Ο	
Was As Received MC	Preserved:	Ye	es				I.	
Moisture Content (%	b):	11	.4	31.3	32.4	34.3	Ν	
Number of Blows:				31 26 19 T				
Plastic Limit Tes	t	1	2	Range		Test Resu	ılts	
Tare Number:		100	198			Liquid Limit	t (%):	33
Wt. of Tare & Wet Sa	mple (g):	26.85	22.99					
Wt. of Tare & Dry Sar	nple (g):	25.85	22.01			Plastic Limi	t (%):	19
Weight of Tare (g):		20.73	16.94					
Weight of Water (g):	<i>(</i>)	1.0	1.0			Plasticity In	dex (%):	14
Weight of Dry Sample	e (g):	5.1	5.1			USCS Symb	ool:	CL
Moisture Content (%	b):	19.5	19.3	0.2		,		-
Note: The acceptable	range of the t	wo Moistu	re contents	s is ± 2.6				
<u> </u>	Flow Curve				P	lasticity Chai	rt	
20						-		
30				60		Î		
34				-				
F				50				
32	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			-	CL		н 🖊	
(%)		μ Ψ Ι		% 40				
30 E				ex (

 Tested By
 TO
 Date
 11/14/16
 Checked By
 TMP
 Date
 11/16/16

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

520 Pike Street, Suite 1375 Seattle, WA 98101 PH 206.496.1456 www.geosyntec.com

26 May 2017 TXG0007-012-6302

VIA EMAIL

Colin Olness, Contractor Atlantic Coast Pipeline 99 Edmiston Way Buckhannon, WV 26201

Subject: Geotechnical Investigation at Potential Slope Instability Site Supply Header Project (SHP) – Atlantic Coast Pipeline Project Route Revision 11B, Segment TL-635, MP 9.3 Doddridge County, West Virginia

Dear Mr. Olness:

This data summary report has been prepared by Geosyntec Consultants, Inc. (Geosyntec) for Dominion Transmission, Inc. (DTI) to present the geotechnical drilling investigation performed at a geohazard site located at Milepost (MP 9.3) along the Supply Header Project (SHP) TL-635 Segment of the Atlantic Coast Pipeline (ACP) Route Revision 11B (Project; Figure 1). The objective of this geotechnical drilling investigation was to characterize the subsurface conditions at the site and confirm or preclude suspected slope instability identified as part of our Phase 2 investigation [Geosyntec, 2016]¹, so that if required, measures may be designed to mitigate the effects of potential ground movement on the pipeline. This report summarizes activities completed in the field, a description of the geologic conditions observed at the site, and provides the results of the geotechnical laboratory testing program.

GEOTECHNICAL INVESTIGATION

This geotechnical drilling investigation included a site reconnaissance, access road improvements, geotechnical borings, instrumentation installation and monitoring, and geotechnical laboratory testing.

¹ Geosyntec Consultants, 2016. "Geohazard Analysis Program Phase 2 Report, Atlantic Coast Pipeline and Supply Header Project", submitted to Dominion Transmission Inc. dated 29 July 2016.

Site Reconnaissance

Our field reconnaissance performed on 24 August 2016 consisted of a site visit by a Principal Engineering Geologist from Geosyntec, two representatives from Horn and Associates (drilling subcontractor), and two representatives from the ACP to evaluate existing site conditions and access to the identified geohazard site location. The objective of the field reconnaissance was to familiarize the drilling contractor with the site conditions, identify potential access routes, evaluate the number and type of exploratory borings needed to adequately characterize the site, and select locations for the exploratory borings in the field.

Health and Safety

Prior to conducting our field investigation, Geosyntec updated our existing site-specific Health and Safety Plan (HASP) in accordance with Occupational Safety & Health Administration (OSHA) requirements. The updated HASP addressed potential hazards at the site locations, including requirements for worker protection based on the anticipated activities. Additionally, the HASP also included directions to nearest emergency medical facility. Prior to commencing work at the site, Geosyntec also delineated the locations of the individual explorations and notified Underground Service Alert (USA, Dig-Alert) to identify the locations of any existing underground utilities within the immediate vicinity.

Site Access and Improvements

Drilling locations at SHP MP 9.3 were accessed using a private gated road off of Long Run Road and followed pre-existing logging roads. Due to the remote locations of the investigation site, minor grading and road restoration activities were performed where no previous access existed. Road restoration and grading work was performed by Horn and Associates utilizing a John Deere 85D tracked excavator. Work consisted of trimming secondary vegetation growth, smoothing the ground surface, and localized widening and leveling where cross-slope conditions would not permit safe passage of a light weighted track mounted drill rig.

Where ground disturbance was required, erosion and sediment control Best Management Practices (BMPs) were implemented to minimize the potential for erosion and/or sediment transport to adjacent areas outside the limits of disturbance. BMPs consisted of 8-inch silt socks installed along the edge of the graded access roads and the drilling investigation pads. Upon completion of drilling activities, straw and seed were hand broadcasted along the surface of graded areas to help reduce erosion and sediment transport and promote vegetative growth. A photographic log documenting completed road improvement and site restoration activities is provided in Appendix A.

Subsurface Explorations

This geotechnical investigation included drilling three exploratory borings at the SHP MP 9.3 geohazard site location along the northeastern facing slope (designated Borings B-1, B-2, and B-3; Figure 1). Borings were drilled between 50.0 and 50.5 feet below ground surface (ft bgs). Table 1 presents the coordinates, ground surface elevations, and termination depths of Borings B-1, B-2, and B-3.

Boring ID	Coor	rdinates – UTM posed	I, Zone 17S, NA As-B	Ground Surface Elev. WGS84	Final Depth	
	Latitude	Longitude	Latitude	Longitude	(MSL- ft)	(ft)
B-1	39.275308	-80.634097	39.275313	-80.634053	1,150	50.4
B-2	39.275757	-80.633648	39.275871	-80.633730	1,095	50.0
B-3	39.275952	-80.633808	39.275975	-80.633790	955	50.5

 Table 1 – Coordinates of Boring Locations

The borings were advanced by Horn and Associates of Winchester, Kentucky utilizing a lightweight rubber track mounted Diedrich D-50 drill rig. Borings were drilled using a combination of 8-inch hollow-stem auger (HSA) and core drilling (NX) methods. During HSA drilling, drive samples were collected at approximately 30-inch intervals using a 2.5-inch diameter, 24-inch long Standard Penetration Test (SPT) sampler to facilitate lithologic logging and sample collection for geotechnical laboratory testing. SPT sampling was performed through the entire overburden material profile and into underlying bedrock, to the extent practical.

Following auger or SPT refusal, or upon encountering competent formation (bedrock) material, the investigations switched to core drilling methods until the borehole was advanced at least 15 feet into intact bedrock. The core drilling process required circulation of water mixed with a naturally occurring bentonite based drilling fluid additive to regulate the temperature of the core bit, to carry cuttings to the surface, and to promote borehole stability. During the coring process, drilling fluid was pumped through the drill rods and past the bit before returning to the surface with cuttings through the annular space between the drill rods and the wall of the boring. At the surface, the fluid and cuttings were discharged into a baffled sump tank to allow the cuttings to fall out prior to recirculating the drilling fluid back down the borehole. Water required for this process was pumped from a nearby creek source located downslope along Long Run Road.

The soil sample descriptions were logged by a Geosyntec geologist in accordance with ASTM International D2488. Additionally, recovered cores were logged to record structural orientation and discontinuities. Upon completion of logging, the cores were photographed (Appendix B) and retained in core boxes for subsequent sample selection and/or archiving. Table 2 summarizes the length of each boring, depth to top of bedrock, and the length of rock coring.

Boring ID	Boring Depth (ft)	Depth to top of Bedrock (ft)	Length of Rock Coring (ft)
B-1 (SHP MP 9.3)	50.4	10.4	40.0
B-2 (SHP MP 9.3)	50.0	15.0	35.0
B-3 (SHP MP 9.3)	50.5	19.0	31.5

Table 2: Soil Thickness, Length of Rock Cores and Boring Penetration Depths

Geotechnical Instrumentation

Following completion of the core drilling and evaluation of the subsurface conditions, boreholes were selected for instrumentation consisting of either a standpipe piezometer to monitor groundwater levels, or an inclinometer to record potential slope movement over time. Borings not selected for instrumentation were backfilled from the bottom up with a bentonite-cement grout using a tremie pipe.

Piezometer

One temporary standpipe piezometer was installed in exploratory Boring B-3 at the SHP MP 9.3 investigation site. The piezometer consisted of a 2-inch diameter PVC pipe, installed after drilling and prior to auger withdrawal, with a 20 ft section of 0.010-inch slotted screen (screened interval) placed at the overburden material and bedrock interface. The annular space around the screened interval was backfilled with a permeable filter pack generally consisting of coarse-grained sand. A 2-foot bentonite seal was placed at the top of the filter pack, and the remainder of the annular space was backfilled with bentonite-cement grout to prevent conveyance of surface water into the ground. Standpipe piezometer construction logs for the piezometer installed at Boring B-3 are provided in Appendix C and summarized in Table 3a.

Depth to groundwater within the Boring B-3 temporary standpipe piezometer was measured at 30.60 ft bgs on 18 October 2016 approximately 72 hours after drilling. A subsequent groundwater level survey was performed on 13 December 2016 and depth to groundwater was recorded at 29.81 ft bgs. This subsequent measurement is considered to represent relatively stabilized levels, however, the subsurface materials at the site generally exhibits a relatively high percentage of silt and clay sized materials, which reduce permeability. It is possible that the observed groundwater levels in the temporary piezometers may not represent fully stabilized

groundwater conditions due to the time rate of travel of groundwater through these materials. The measurements indicate depth to groundwater decreased 0.79 ft between 18 October 2016 and 13 December 2016. A summary of the standpipe piezometer data is provided below in Table 3a and presented graphically in Figure 2.

Piezometer ID	Boring Depth (ft)	Depth to Top of Bedrock (ft)	Depth to Groundwater ¹ (ft bgs)	Depth to Top of Screen (ft)	Screen Length (ft)	Depth to Bentonite Seal (ft bgs)
B-3 (SHP MP 9.3)	50.5	19.0	29.81	8.8	20	6.8

Table 3a: Standpipe Piezometer	Construction
--------------------------------	--------------

Notes:

1 - Depth to groundwater measured on 13 December 2016.

The surface completion for the piezometer included a locked surface monument to provide access for periodic groundwater level measurements, as well as to be used as a benchmark for subsequent level surveys. The temporary standpipe piezometer is anticipated to be monitored through pipeline construction, if deemed necessary. Upon completion of monitoring, the PVC piezometer should be cutoff below the ground surface and backfilled with bentonite-cement grout.

Inclinometer

One inclinometer was installed in exploratory Boring B-2 at the SHP MP 9.3 geohazard site to monitor the absence or the presence of progressive slope movement that may be imperceptible to the eye. Inclinometer casing consisted of 2.75-inch diameter acrylonitrile butadiene styrene (ABS) plastic. The bottom of the inclinometer casing was installed at 50.0 ft bgs. The annular space between the wall of the boring and the inclinometer casing was backfilled with a lean cement grout mixture from the bottom up using a tremmie pipe. Construction logs for the inclinometer installed at SHP MP 9.3 are provided in Appendix C and summarized in Table 3b.

Following instrumentation installation, an initial baseline survey (i.e., zero reading) was performed on 18 October 2016. The grouted-in inclinometer was allowed approximately 2 days to set prior to conducting the baseline reading. A subsequent inclinometer survey was collected on 13 December 2016, 56 days following the zero reading. The survey measurements indicate a cumulative deflection of less than 0.05 inches during the time between the zero reading and the subsequent inclinometer survey, and is considered negligible given the accuracy of the survey equipment. A summary of the inclinometer survey data is provided below in Table 3b and presented graphically in Figure 3.

Inclinometer ID	Boring Depth (ft)	Depth of Inclinometer Casing (ft)	Depth to Top of Bedrock (ft)	Length of Stickup above Ground Surface (ft)
B-2 (SHP MP 9.3)	50.0	50.0	15.0	1.8

Table 3b: Inclinometer Casing Construction

The surface completion for the inclinometer included a locked surface monument to provide access for periodic monitoring as well as to be used as a benchmark for subsequent level surveys. The inclinometer is expected to be monitored through construction if deemed necessary. Upon completion of monitoring, the inclinometer casing should be cut off below the ground surface and backfilled with bentonite-cement grout.

SITE CONDITIONS

Knowledge of the site conditions was developed from a review of regional geologic conditions and our findings from explorations performed for this investigation.

Geologic Setting

The SHP MP 9.3 investigation site lies within the northeastern margin of the Appalachian Plateau Physiographic Province of West Virginia. The Appalachian Plateau is an uplifted tract of nearly horizontal or gently folded strata extending from the Adirondacks in northern New York, southwest through Pennsylvania, and terminating at the Coastal Plain in Alabama. The Appalachian Plateau feature is a southeast-facing escarpment bounded by the Central Lowland Province to the west and the Valley and Ridge Province to the east. The general site area is located within the Kanawha Physiographic Section. This section, also referred to as the Unglaciated Allegheny Mountains, exhibits high-elevation, low relief plateau-like morphology and is thoroughly dissected by streams with a dendritic drainage pattern and rugged topography.

The Doddridge County area is locally underlain by an approximately 1,100-ft thick sequence of Paleozoic sedimentary rocks of the Dunkard Group. The Dunkard Group is composed of Pennsylvanian-age non-marine cyclic sequences of lithic and micaceous sandstone, siltstone, red and gray shale, claystone and mudstone, limestone, and thin coal beds. During the Pennsylvanian, sedimentary rocks of the Dunkard Group were deposited within the Appalachian Basin following several major marine regressive cycles. Sedimentary rocks were deposited as a series of cyclothems representing landscape positions proximal to active streams. Deposition of sedimentary rocks ceased during early Permian age and were subsequently uplifted and faulted during the Appalachian Orogeny. Upper strata within the Dunkard Group are more resistant to weathering, resulting in decreased erosional processes.

Surface Conditions

The SHP MP 9.3 investigation site is located off of Long Run Road along the proposed SHP TL-635 Segment, where the alignment extends down a steep northeastern facing slope. The site is located upslope of the North Bend Rail-Trail, a multi-use recreational path operated by the West Virginia State Parks. The general site area currently consists of vegetated woodlands with localized residential development in close proximity, but outside the proposed pipeline corridor. The surface morphology along the proposed alignment is characterized by moderate to steep sloping terrain (30% to >58% inclination) with intermittent benches from previous logging activities which break up the steep slope faces. The natural hillsides along the proposed alignment are covered by moderate growth of low lying grasses, shrubs, and deciduous woodlands. An existing underground utility line was observed within the proposed pipeline corridor during the geotechnical drilling investigation located approximately 60 feet west of the boring locations. The underground utility line extends down the northeastern facing slope at MP 9.3 towards Long Run Road, but does not traverse the geotechnical investigation site area.

The elevation at Boring B-3 is approximately 955 feet above mean sea level (ft msl) sloping upwards towards the southwest along the proposed pipeline alignment. The elevation at Borings B-1 and B-2 are approximately 1,150 and 1,095 ft msl, respectively, and sloping upwards towards SHP MP 9.2 (southeast).

Subsurface Conditions

The subsurface conditions at SHP MP 9.3 consist of surficial landslide deposits generally comprised of reddish brown-to-brown, lean clay and silt overlying bedrock of the Pennsylvanianage Dunkard Group. Thickness of the landslide deposits observed in the borings at the SHP MP 9.3 geohazard site ranged from 10.4 ft (Boring B-1), 15 ft (Boring B-2), and 19 ft (Boring B-3). The identified landslide deposits were characterized by remolded and re-worked intervals observed in each of the three borings indicating evidence of a potential historical landslide

Bedrock of the Pennsylvanian-age Dunkard Group observed in the borings at SHP MP 9.3 consist of dark greenish gray-to-gray and olive brown interbedded micaceous shale and sandstone. Recovered rock cores were generally thinly bedded (10° to 30° bedding angles) and closely fractured (10° to 30° fracture angles). Recovered cores were also variably weathered consisting of iron oxidation infilling along the fracture planes. A generalized geologic cross section along the slope profile is presented in Figure 1. The rock quality designation (RQD) of the recovered cores was generally very poor to excellent ranging from 40% to 98% (Boring B-1), 60% to 90% (Boring B-2), and 40% to 98% (Boring B-3). Detailed logs of the three borings advanced at the MP 9.3 site as well, as a key sheet, are presented in Appendix D.

Conditions observed in the borings at the SHP MP 9.3 geohazard site along the with the surface morphology features (i.e., moderate to steep sloping terrain and intermittent breaks in the slope

faces) suggests the site experienced previous slope instability and subsequent episodic slope movement along the interface between the fine grained the colluvial deposits and highly weathered bedrock. However, no evidence of recent active failure such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation.

LABORATORY TESTING

Geotechnical Laboratory Testing Program

Geosyntec contracted Geotechnics, Inc. (Geotechnics) of East Pittsburgh, Pennsylvania to conduct laboratory testing assigned by Geosyntec on selected soil samples and rock cores to evaluate the pertinent geotechnical index properties. The laboratory testing program, on soil samples, was primarily focused on soil classification and index testing. Testing on select rock cores focused on compressive and tensile strength. The laboratory testing program consisted of:

Soil Samples

- Water content tests per ASTM D2216;
- Atterberg limit tests per ASTM D4318;
- Sieve analysis tests per ASTM D6913; and
- Hydrometer tests per ASTM D7928.

Rock Cores

- Split tensile strength test per ASTM D3967; and
- Unconfined compression test per ASTM D7012-Method C.

Table 4 summarizes the number and types of laboratory testing conducted on soil and rock samples from the SHP MP 9.3 geohazard site.

	Number of Laboratory Tests				
Types of Laboratory Tests	Boring B-1	Boring B-2	Boring B-3		
Water Content	3	4	4		
Atterberg Limits	2	2	3		
Sieve Analysis	2	2	3		
Hydrometer Test	2	2	3		
Rock Split Tensile Strength	3	3	0		
Rock Uniaxial Compressive Strength	1	1	1		

Table 4 – Number and	Types of I	Laboratory 7	Fests
----------------------	------------	--------------	--------------

Laboratory Test Results

The laboratory test results are also plotted in the corresponding boring logs (Appendix D), and the individual test results are presented in detail in Appendix E.

Soil Sample Testing

Given the granular nature of the soils from SHP MP 9.3, select samples were tested for grain-size distribution to quantify percentages of gravels, sands and fines. The results show that the soils consist of lean clay (CL), with the exception of one sample (B-2-5 at 11.2 ft bgs), which consists of silt (ML).

The laboratory soil testing performed for the SHP MP 9.3 borings included water content and Atterberg limits measured on selected lean clay and silt samples and grain–size analysis to quantify the percentages of gravel, sand and fines, particularly on samples containing coarser grained material. Table 5 presents a summary of the laboratory test results conducted on soil samples.

Boring ID	Sample ID	Depth	Water Content	Percent of Gravel ⁽¹⁾	Percent of Fines ⁽²⁾	Liquid Limit	Plastic Limit	Plasticity Index
		(11)	(70)	(%)	(70)			
B-1	B-1-1	1.8	15.9	-	-	-	-	-
B-1	B-1-3	7.5	12.1	0.63	94.31	38	21	17
B-1	B-1-4	9.6	7.0	0.22	82.16	36	19	17
B-2	B-2-1	1.5	16.8	1.24	52.72	37	22	15
B-2	B-2-2	5.0	14.1	-	-	-	-	-
B-2	B-2-4	9.5	9.6	-	-	-	-	-
B-2	B-2-5	11.2	5.2	0.51	93.43	33	18	15
B-3	B-3-1	2.5	18.8	2.96	77.55	41	24	17
B-3	B-3-3	7.5	14.3	-	-	-	-	-
B-3	B-3-5	13.0	10.4	0.81	71.95	32	21	11
B-3	B-3-6	14.9	5.3	18.24	21.73	31	20	11

 Table 5:
 Summary of Laboratory Test Results on Soil Samples

Notes:

1 - Retained #4 sieve.

2 - Passing #200 sieve.

"-" Not analyzed

Rock Core Testing

A summary of laboratory test results conducted on rock samples is presented in Table 6.

Boring ID		Sample	Unit	Uniaxial	Split Tensile Strength (psi)								
	Core ID	Interval (ft)	Weight (pcf)	Compres. Strength (psi)	Specimen 1	Specimen 2	Specimen 3						
B-1	R-4	31.7- 32.7	162.9	8,940	997.3	840.3	632.3						
B-2	R-1	17.1- 18.1	154.3	9,900	748.2	833.0	835.1						

Table 6: Summary of Laboratory Test Results on Rock Samples

Summary of Laboratory Testing

The geotechnical laboratory test results indicate that water content of landslide deposits varied between 7% and 16% (Boring B-1), 5% and 17% (Boring B-2), and 5% and 19% (Boring B-3). The moisture content at the time of the field investigation showed a decreasing trend with depth. The sieve analyses indicate that the landslide deposits have approximately 22% to 94% fine-grained particles (particles smaller than 75 micrometers [μ m]) and approximately 7% to 34% clay particles (particles smaller than 5 μ m). The Atterberg test results show that the landslide deposits contain a plasticity index (PI) of 11 to 17 and the soil unit is mainly within the low plasticity clay zone (i.e., CL). The PI is generally constant with depth within the low plasticity clay soil unit.

The split tensile strength of the recovered rock cores varied between 632.3 and 997.3 pounds per square inch (psi) for samples consisting of primarily shale material (core R-4) and between 748.2 and 835.1 psi for samples consisting of primarily sandstone (core R-1). The unconfined compression strength of the recovered rock core was 8,940 psi for shale material (core R-4) and 9,900 psi for sandstone material (core R-1).

SUMMARY OF FINDINGS

Surficial morphologic features observed during our Phase 2 reconnaissance along with subsurface conditions recorded during the geotechnical drilling investigation at the SHP TL-635 MP 9.3 geohazard site suggest previous shallow seated slope movement occurred downslope along the proposed ACP alignment. The approximate extent of mapped instability is presented in Figure 1. Although no evidence of recent or active slope movement such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation, data collected during subsequent inclinometer monitoring events will be used to supplement and inform site-specific ACP SHP Geotechnical Investigation MP 9.3_20170526_F

engineering evaluations, and recommendations for mitigation measures should future potential instability be identified. An addendum to this data summary report will be issued as subsequent monitoring data is collected.

As a consequence of these findings, and a subsequent engineering analysis of slope stability, reported separately, a site specific geotechnical hazard mitigation design has been developed for this slope which incorporates:

- restrictions on material stockpiling during construction grading;
- targeted drainage measures along the trench;
- use of deformable backfill around the installed pipeline; and,
- recommendations for post construction monitoring.

CLOSING

Geosyntec appreciates the opportunity to provide Dominion Transmission, Inc. with this data summary report, and we look forward to working together on this important project. If you have questions require additional information, please contact Logan any or Brant (lbrant@geosyntec.com, Warner 281.810.5056) or Jared (jwarner@geosyntec.com, 858.716.2885).

Sincerely,

Geosyntec Consultants,

Logan Brant, Ph.D., P.E. Senior Geotechnical Engineer

anos

Jared Warner, P.G. Project Geologist

Attachments:

Figures

Figure 1 – Site Plan and Generalized Geologic Profile

Figure 2 – Piezometer Survey Data

Figure 3 – Inclinometer Survey Data

Appendices

Appendix A – Photographic Log

Appendix B – Core Photographs

Appendix C – Piezometer and Inclinometer Construction Logs

Appendix D – Logs of Borings B-1, B-2, and B-3

Appendix E – Laboratory Test Results

FIGURES

NOTES:

- 1. MAPPING AND TOPOGRAPHY BASED ON UTM COORDINATE SYSTEM WITH NAD83 DATUM, ZONE 17, US SURVEY FOOT, CENTRAL MERIDIAN 81 W.
- 2. LIDAR ELEVATION DATA AND TOPOGRAPHIC FEATURES COLLECTED IN 2016 AND PROVIDED BY GAI AS 2-FOOT CONTOURS.
- 3. STREAM AND WETLAND DATA PROVIDED BY NRG/ERM.

GEOLOGIC PROFILE LEGEND

EXISTING GROUND SURFACE

LITHOLOGIC CONTACT (QUERIED WHERE UNCERTAIN)

QIS

LANDSLIDE DEPOSITS

Qaf

ARTIFICIAL FILL

Qai

ALLUVIUM

Image: Content of Landslide

WATER LEVEL 12/13/16

20 HORIZONTAL SCALE IN FEET

Geosyntec [▶]
consultants

FIGURE

PROJECT NO: TXG0007

MAY 2017

Notes: Precipitation data obtained from weather station located in Clarksburg, West Virginia. Reference: <u>www.wunderground.com</u>

Piezometer Survey Data (Boring B-3)

Project: ACP SHP MP 9.3 Location: Doddridge County, West Virginia Project Number: TXG0007-012-6302 Client: Dominion Transmission, Inc.

Mid Slope, Inclinometer B-2

Note: See inclinometer installation record for additional information.

Inclinometer Survey Data (Boring B-2)

Project: ACP SHP MP 9.3 Location: Doddridge County, West Virginia Project Number: TXG0007-012-6302 Client: Dominion Transmission, Inc.

APPENDIX A PHOTOGRAPHIC LOG

TXG0007-012-6302

Geosyntec[▶]

consultants

APPENDIX B CORE PHOTOGRAPHS

Geosyntec▷

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP SHP MP 9.3

CLIENT: DOMINION TRANSMISSION, INC.

PROJECT NO.: TXG0007-012-6302 LOCATION: DODDRIDGE COUNTY, WEST VIRGINIA

SHP MP 9.3 Boring B-1: Box 1 of 3 (10.4 to 25.4 ft bgs)

SHP MP 9.3 Boring B-1: Box 2 of 3 (25.4 to 40.2 feet)

SHP MP 9.3 Boring B-1: Box 3 of 3 (40.2 to 50.4 ft bgs)

Geosyntec▷

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP SHP MP 9.3

CLIENT: DOMINION TRANSMISSION, INC.

PROJECT NO.: TXG0007-012-6302

LOCATION: DODDRIDGE COUNTY, WEST VIRGINIA

SHP MP 9.3 Boring B-2: Box 1 of 3 (15.0 to 30.0 ft bgs)

SHP MP 9.3 Boring B-2: Box 2 of 3 (30.0 to 45.0 ft bgs)

SHP MP 9.3 Boring B-2: Box 3 of 3 (45.0 to 50.0 ft bgs)

Geosyntec▷

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP SHP MP 9.3

CLIENT: DOMINION TRANSMISSION, INC.

PROJECT NO.: TXG0007-012-6302 LOCATION: DODDRIDGE COUNTY, WEST VIRGINIA

SHP MP 9.3 Boring B-3: Box 3 of 3 (49.2 to 50.5 ft bgs)

APPENDIX C

PIEZOMETER AND INCLINOMETER CONSTRUCTION LOGS

Geosyntec Consultants

Appendix C - Piezometer Construction Log

Site: Atlantic Coast Pipeline MP 9.3	Date: 16-Oct-16
Well ID: B-3 (MP 9.3)	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 50.5'
Drillers: Steven Ison	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Well Depth: 49'
	Well Diameter: 2"
Top of Casing 1.8'	Well Construction: Material: SCH 80 PVC
Ground Elev.	Inside Diamter: 2"
	Screen Slot Size: 0.01"
	Screen Beg.: <u>8.8'</u> End: <u>28.8'</u>
	Sump Y / N Type/Length: PVC End Cap (0.3")
	Filter Pack: Type/Brand: Global Drilling #5 Quartz Sand
	Amount Used: 6.5 50lb bags
	Placement Method: Iremie
Top of Seal 4.8 Seal Length	Seal:
2'	Amount Used: 1/2 50lb bag
Seal Bottom 6.8	Imitalit Osed. N2 5010 dag Imitalit Osed. N2 5010 dag
Top of 2' Sond Above	Set-up Time: Overnight
Screen 8.8' Sand Above	Placement Method: Poured
	Grout:
Screen	Type/Brand:Type I/II Portland Cement/PureGoldGel Bentonite2 94lb bag of Portland + 50lb bag
Length	Amount Used: bentonite
20'	Vol. Fluid Added: ~ 60 gallons H ₂ O
Filter Pack	Placement Method: Tremie
Length	Well Completion:
42.2	Above Grade / Below Grade
Screen	Guard Posts? Y / N
Bottom 28.8' Sump Lengtl	h Pad Size: N/A
	Cover Type/Size: Protective Cover (4.5")
Well Depth 49'	Comments:
Boring Depth 50.5	
Well Diam.	logist Signature: Jared Warner
8"/2.16"	
Borehole Diam.	

Geosyntec Consultants

Appendix C - Inclinometer Construction Log

Site: Atlantic Coast Pipeline MP 9.3	Date: 16-Oct-16
Boring ID: B-2 (MP 9.3)	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 50.0'
Drillers: Steven Ison	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Inclin. Depth: 48.5'
	Inclin. Diameter: 2.75"
Top of	Well Construction:
Casing 5	Material: ABS Plastic (Quick Connect)
	Inside Diamter: 2.32"
Ground Elev. 0	Screen Slot Size: N/A
	Screen Beg.: N/A End: N/A
	Sump Y / N
	Type/Length:
N/A	Filter Pack:
	Type/Brand: N/A
	Amount Used: N/A
	Placement Method: N/A
Top of Seal	Seal:
N/A	Type/Brand: N/A
Seal Bottom N/A	Amount Used: N/A
N/A	Vol. Fluid Added: N/A
Top of Screen N/A Sand Above	Set-up Time: N/A
Screen	Placement Method: N/A
	Grout:
	Type/Brand: Gel Bentonite
Screen	1 94lb bag of Portland + 25lb bag
	Amount Used: bentonite
N/A	Vol. Fluid Added: ~50 galloffs H ₂ O
Filter Pack	Placement Method: I remie
	About Crude (Delaw Crude
	Above Grade / Below Grade
Screen	Dad Sizer N/A
Bottom IV/A Sump Lengtr	$\frac{\Gamma_{A}}{\Gamma_{A}} = \frac{\Gamma_{A}}{\Gamma_{A}} \frac{\Gamma_{A}}{\Gamma_{A}} = \frac{\Gamma_{A}}{\Gamma_{A}} \frac{\Gamma_{A}}{\Gamma_{A}} \frac{\Gamma_{A}}{\Gamma_{A}} = \frac{\Gamma_{A}}{\Gamma_{A}} \frac{\Gamma_{A}}{\Gamma_{A}} \frac{\Gamma_{A}}{\Gamma_{A}} + $
Inclin Donth (18.5)	
1 5'	Comments: Bottom of inclinometer casing placed at
Boring Depth 50'	48.5' following hole collapse from 50' to 48.5' and backfilled
2.75"	with grout to surface.
Inclin. Diam.	agist Signature: Jarad Warman
8"/2.16"	
Borehole Diam.	

APPENDIX D

LOG OF BORINGS B-1, B-2, and B-3

Geosyntec[▶]

consultants

engineers | scientists | innovators

PROJECT ACP SHP MP 9.3 GEOTECHNICAL INVESTIGATIONPROJECT LOCATIONDODDRIDGE COUNTY, WEST VIRGINIAPROJECT NUMBERTXG0007-012-6302

	Ge	eos co	ynt nsultz	ec [©] 11490 Ints Housto Tel: (2)	Westhe n Texas	mer Ro 77077 4601	ad			BOR PRO NUM LOC	ING JEC IBE	G CT R ON	SHP MP 9.3 B-1 ACP SHP TL-635 TXG0007 Doddridge County, WV	GI	ROL DP (JND DF C	SUI	She RF.	EET	1 OF	= 3	
) - Bc	Boring Log					RT I SH [DRII	LL DATE 10/15/2016 LL DATE 10/15/2016		DATUM Ft above MSL											
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil N 2) Color 3) Moistu 4) Grain 5) Percer	DES ame (USCS ure Size ntage	SCRIPTION 6) Plasticity 7) Density/Consistency 8) Other (Mineral Conternation Conternation) Discoloration, etc.) 	ent,	SAMPLE NO.	ТҮРЕ	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pcf)	MOIST UNIT WEIGHT (pd)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			PLASTICITY INDEX
- 2-		FAT CLA Mediun brown S	AY (CH), Lig n stiff, High p Sandstone fr	ht reddish brown, Moist, Jlasticity, Presence of olive agments (up to 0.5 inch).		B-1-1	_	7 3 3 4	7	22									15.9			
4-	- 114 <u>5</u>	Becomes yellowish brown and reddish brown with localized FeOx staining, Dry to moist, Medium stiff to stiff.				B-1-2		2 3 5	8	67												
		LEAN Cl grayish Hard.	L AY (CL), D brown sean	Park reddish brown with ns (<0.1 inch), Dry to moist,		B-1-3		5 15 20	35	67						91.6	4.5	3.9	12.1	38	21	17
- 10-	 1140	LEAN Cl brown, sand ar	L AY WITH S Dry, Hard, P nd olive brow	AND (CL), Dark reddish laty, Presence of trace fine n Sandstone fragments.		B-1-4		27 50/1	50	100			Auger refusal at 10.4 ft bgs.			80	10.5	9.5	7.0	36	19	17
- 12- -													Switch to rock coring.									
14 -	.1135	-																				
16-		-																				
18-	1130	-																				
- 22	-																					
- 24-	1125	-																				
26- -																						
28-		-																				
30_1120 Image: Contractor Horn & Associates LAT EQUIPMENT Diedrich D-50 LON DRILL MTHD. Hollow Stem Auger COC DIAMETER 8 inches LOGGER Jared Warner REVIEWER J				LATITU LONGI COORE	DE: 39 UDE: -8 INATE S	 0.275 0.63 YST	 531 405 EM:			 ES:	 SHEE	TFOR SYMBOLS AND ABBREVIA	TIONS	8								

Coorpoteo											во	ORING SHP MP 9.3 B-1 SH								HEE	ET 2 OF 3					
	CONSULTANTS 11490 Westheimer Road Houston Texas 77077 Tel: (281) 920-4601											PROJECT ACP SHP IL-635 NUMBER TXG0007 GROUND SURF. 1150 LOCATION Doddridge County, WV TOP OF CASING START DRILL DATE 10/15/2016 DATUM States MCL														
		GS FORM: ROCK-5910 Appendix D - Boring Log									START DRILL DATE 10/15/2016 DATUM Ft above FINISH DRILL DATE 10/15/2016 0								ve M	MSL						
(sbc		(ft)			DESCF	RIPTION		Ю			t) t)	SAN E	IPLE (%)		iin.)	COMMENTS				UNUI DNJ	ר ץ D 4	ΤA				
DEPTH (ft-t		ELEVATION	1) Foi 2) Ro 3) Co 4) Gra 5) Be	rmation, ock Name olor ain Size/ edding	Member e Percentage	6) Weathering 7) Hardness 8) Cementatio 9) Moisture 10) Other (Min Discolorat	g on neralization, ion, Odor, etc.)	GRAPHIC L	MELL LOG	RUN NUMBE	LENGTH (f	RECOVERY	RECOVERY	RQD	RUN TIME (m	1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DEN	APERTURE	FRACTURE FILL	MINERAL TYP	PLANARITY	DIP (degrees)			
	_1'	149 _																								
	_1'	148 _																								
	_1'	147 _ 146																								
5.	1.	145_																								
	_1	144 _																								
	_1'	143 _																								
	_1	142 _																								
	_1'	141 _																								
10·	_1' - 1,	140_ 130	SHALE. C	Dlive brov	wn to black. Th	hin and wavv bed	dina (10			R-1	5	5	100	40	5											
		138 _	degrees), i Moderately	Near ver y weathe	tical very close red, Hard, Pre	ely fractured with esence of FeOx a	Quartz infilling, long fracture																			
	_1'	137 _	planes.																							
	_1'	136 _																								
15·	_1	135_	Becomes of Becomes I	dark brov hard.	wn, Low hardn	iess.																				
	_1'	134 _	Becomes s	slightly v	veathered.					R-2	10	8.7	87	43	14											
	_1'	133 _	Fractures h	hecomes	: 30 to 40 deg	roos																				
		132 _ 131	T lactures i	Decomes	50 10 40 degi	1663.																				
20-	1,	130_																								
	-1 -1	129 _																								
	-1	128 _																								
	-1	127 _																								
	_1^ _	126 _	CANDOTO		rk groonish	ov. Intork-dd-d C	Challe Classic																			
25	_1'	125_	to medium	n fracture	ik greenish gra d, Slightly wea waw (30 decr	ay, interbedded S athered, Hard. rees) 30 degress	fracture Freeb			R-3	5	5	100	92	5											
		124 _ 123 _	Hard.	COMES	wavy (50 uegr	uegrees	naoture, riesii,																			
	1	122 _																								
	-1	121 _																								
30.	_h.	120	, • • • • • •																				 			
C E	QL	JIPM	ACTOR IENT	Horn &	x Associate ch D-50	S	LATITUDE: LONGITUDE:	39.27 -80.63	531 3405		NOTES:															
D D	DRILL MTHD.Rock CoringCOORDINATE SYSTEM:DIAMETER8 inches																									
Ľ	00	GGE	R	Jared	Warner	REVIEWE	R Jared Warn	er			SEE	KEY	' SHE	ETF	OR	SYMBOLS AND ABBREVIAT	ONS									

05-CONT_CORE BORING LOG_SHP ROCK.GPJ GEOSNTEC.GDT 4/25/17
	Ge	Consultants 11490 Westheimer Road Houston Texas 77077 Tel: (281) 920-4601							RIN DJE MBE	G CT ER	S A(T)	CP S	P MP 9.3 B-1 SHP TL-635 007	GROU	JND \$	SURF	SHEE 11	тз	DF 3	
	GS	COLLS S FORM: DCK-5910	Appendix D -	920-4601 Boring	Log]	ין יוך	LOC STA FINI	CAT ART	ION DR DR	I D	odd DA DA	ridge County, WV TE 10/15/2016 TE 10/15/2016	TOP (DATL	of Ca JM Fi	ASIN t abo ^v	G ve M	SL		
DEPTH (ft-bgs)	ELEVATION (ft)	1) Forma 2) Rock 3) Color 4) Grain 5) Beddi	DESCRIPTION ation, Member 6) Weathering Name 7) Hardness 8) Cementation Size/Percentage 9) Moisture ing 10) Other (Minera Discoloration.	lization, Odor. etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE		MINERAL TYPE	PLANARITY PLANARITY	DIP (degrees)
	1119 _ 1118 _ 1117 _ 1116 _ 1115 _ 1114 _ 1113 _ 1112 _	SHALE, Dark FeOx infilling, Becomes stra Becomes gra Moderately w Becomes ver	k gray to reddish brown, 30 degrees fract , Fresh, Hard. atified dark gray to dark reddish brown. ny to dark gray, Moderately fractured (70 d reathered, Weak. y closely fractured, Slightly weathered to	degrees), fresh, Hard.			R-4	5	5	100	98	5								
- 40- - - -	-1112 - -1112 - -1111 - 40 - 1110 - Becomes moderately weathered, Weak. Becomes dark reddish brown, Intensely fractured with interbedded Fat clay seams between (41.5 to 41.9 ft bgs) and (42.7 to 44.3 ft bgs). -1108 - -1107 - -1106 - Becomes dark greenish gray																			
45 - - -	1105 1104 _ 1103 _ 1102 _	Becomes dar Becomes dar clay seam be	rk greenish gray. rk gray, Moderately weathered, Weak, Pr stween 46.2 and 47 ft bgs.	resence of			R-6	10	10	100	72	6								
50													Termination depth at 50.4 ft bgs.							
60- 60-	1094 _ 1093 _ 1092 _ 1091 _ 1090 DNTR	 - - - - - - - - - - - - - - - - - - -	39.275	531		NOT	TES													
EC DF DL LC	QUIPN RILL M AMET OGGE	MENT Di MTHD. Ro FER 8 IR Ja	iedrich D-50 LO ock Coring CC inches ared Warner REVIEWER	DORDINATE S	80.63 SYST r	405 EM :		SEE	KEY	SHE	ETF	OR	SYMBOLS AND ABBREVIATIC	NS						

JTEC GDT 4/25/17 d H S Ċ BORING CONT CORF

(Ceosyntec Data 11490 Westheimer R									BOR		3	SHP MP 9.3 B-2					SHE	ET	1 01	= 3	٦
			sult	ants 11490 V Houstor Tel: (28	Vest n Tex 31) 9	thein xas 7 20-4	ner Roa 77077 601	ad				IBE ATI RT	R ON DRII	TXG0007 Doddridge County, WV LL DATE 10/16/2016	GI T(D,	ROL OP (ATL	JND Of C JM F	SUI CAS ⁼ t ab	RF. ING	1098 MSL			
	s	OIL-5910		Appendix E) - [Bor	ring L	-0(g	JĽ	FINI	SHI	DRII	LL DATE 10/16/2016									
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Nan 2) Color 3) Moisture 4) Grain Siz 5) Percenta	DE ne (USCS e ze age	SCRIPTION 6) Plasticity 7) Density/Consistency 8) Other (Mineral Conter Discoloration, etc.)	nt,	GRAPHIC LOG	SAMPLE NO.	TYPE	BLOWS PER 6"		RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pcf)	MOIST UNIT WEIGHT (pd)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			PLASTICITY INDEX
2-	1095	GRAVELL Brown an of dark gr	Y LEAN (ad greenis ay to blac	CLAY WITH SAND (CL), sh brown, Moist, Stiff, Presend sk Shale fragments	ce		B-2-1	4	3 5 4	9	33						50.9	16.6	32.5		37	22	15
4-		Becomes of stiff, Block fragments	dark redd ky and cr s (<0.25 i	ish brown, Moist to dry, Very umbles, Presence of Shale nch).			B-2-2		3 8 9	17	100												
6 Becomes hard, Presence of white to gray Shale intervals. B-2-3 11 67 67 8 - 1090 9 - 1090 9 - 1090 9 - 1090 9 - 1090 9 - 1090 9 - 1090																							
8- - 10-		-					B-2-4		7 15 17	32	67												
$\begin{bmatrix} 10 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $																							
- 16-		_												Auger refusal at 15 ft bgs. Switch to rock coring.									
18-	1080	_																					
20-		-																					
26-																							
- 28	 1070	-																					
30- CC EC DF DL LC) QUIP RILL AME DGG	RACTOR MENT MTHD. ETER ER	Horn & Diedric Hollow 8 inche Jared V	Associates h D-50 Stem Auger s Varner REVIEWE I	LATI LON COO R Ja	ITUD IGITU IRDIN Ared V	E: 39 IDE: -80 IATE S ^V Varner	 0.63 YST	587 373 EM:			ES:	6HEE	T FOR SYMBOLS AND ABBREVIA		6							

	Geosyntec [®]								BO	RIN	G	S	HF	P MP 9.3 B-2			5	6HEE	T 2 (OF 3	,)
	GS	SFORM:		11490 V Houstor Tel: (28	Vestheimer F 1 Texas 7707 1) 920-4601	Road 7 Lo			NUI LOC STA	MBE CAT ART	ER ION DR DR	T) I D ILL	G0 odd DA DA	007 ridge County, WV TE 10/16/2016 TE 10/16/2016	gro Top Dat	ound of C um F	SURI ASIN t abo	F. 10 I G ve M	98 SL		
\vdash			<u> </u>						5	SAM	PLE					DIS	CON		ry da	TA	
DEPTH (ft-bgs)	ELEVATION (ft)	1) Formation 2) Rock Nar 3) Color 4) Grain Siz 5) Bedding	DESCF n, Member ne e/Percentage	 RIPTION Weathering Hardness Cementatic Moisture Other (Mir Discolorat 	n neralization, ion, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	TYPE	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
5- 10- 15-	1097 _ 1096 _ 1095 _ 1093 _ 1093 _ 1092 _ 1090 _ 1089 _ 1088 _ 1086 _ 1086 _ 1086 _ 1086 _ 1086 _ 1088 _	SANDSTONE, C	Dive brown, Max	ssive bedding, 10	degrees			R-1	10	9.7	97	80	10								
20- 	1084																				
	_1069 _	SANDSTONE, R fractured with Fer	Reddish brown, N Ox along fractur	Wavy bedding, Cl e planes.	osely																
	UNTR QUIPN RILL N IAME1 OGGE	ACTOR Horn MENT Died MTHD. Rock FER 8 inc R Jarec	& Associate rich D-50 & Coring hes d Warner	REVIEWER	LATITUDE: LONGITUDE: COORDINATE	39.27 -80.63 SYST er	587 3373 EM:		NO	KEY	SHE	ETF	ORS	SYMBOLS AND ABBREVIAT	IONS						

JTEC GDT 4/25/17 d H S Ċ BORING CONT CORF

	٦						во	RIN	G	S	HF	P MP 9.3 B-2			S	HEE	T 3 (OF 3				
	GS		y L I DSUJ		11490 V Houston Tel: (28	Vestheimer F Texas 7707 1) 920-4601	Road 7	<u>a</u>		PRO NUI LOO ST/ FIN	DJE MBE CAT ART ISH	CT ER ION DR	A T N D RILL	CP KG0 odd DA DA	SHP TL-635 007 ridge County, WV TE 10/16/2016 TE 10/16/2016	gro Top Dati	und : of C JM F	SURI ASIN t abo	F. 10 I G ve M:	98 SL		
	RO	CK-5910					, <u> </u>	9			SAM	PLE					DIS	CONT				
DEPTH (ft-bgs)	ELEVATION (ft)	1) Fc 2) Rc 3) Cc 4) Gr 5) Be	rmation ock Narr olor ain Size edding	DESCI , Member ne /Percentage	6) Weathering 7) Hardness 8) Cementatio 9) Moisture 10) Other (Min Discolorati	n ieralization, ion, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	TYPE	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
$\begin{array}{c} -007 \\ -006 \\ -1066 \\ -1066 \\ -1064 \\ -1064 \\ -1064 \\ -1061 \\ -1060 \\ -1061 \\ -1060 \\ -1057 \\ -1055 \\ -$																						
-1066 - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																						
CON EQU DRII DIAI LOG																						

		eos					BOF PRO		Э Ст	SHP MP 9.3 B-3 ACP SHP TL-635					SHE	ET	1 0	F 3	$\overline{\ }$				
		COI	nsult	ants Houston Tel: (28	Ves n Te (1) 9	sthein exas 7 920-4	ner Roa 77077 601	ad			NUN LOC STA	IBE ATI RT	r on dri	TXG0007 Doddridge County, WV LL DATE 10/15/2016	G T(D	ROI OP (ATL	und of C Jm F	SUI CASI Ttab	RF. ING	955 MSL			
L	s	OIL-5910		Appendix D	- E	Bor	ing L	og		JL	FINI	SHI	DRII	LL DATE 10/16/2016									
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Na 2) Color 3) Moistu 4) Grain S 5) Percen	DE me (USCS e size tage	 SCRIPTION 6) Plasticity 7) Density/Consistency 8) Other (Mineral Conter Discoloration, etc.) 	nt,	GRAPHIC LOG	SAMPLE NO.	TYPE	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pď)	MOIST UNIT WEIGHT (pdf)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			
2-		LEAN CL to reddis Shale ar	AY WITH sh brown,E nd Sandsto	SAND (CL), Mottled yellowish Dry, Medium stiff, Presence of one fragments (up to 0.5 inch).	۱		B-3-1		2 4 4	8	67						74.3	13.5	12.2	18.8	41	24	17
4-	95 <u>0</u>	Increase i to 1 inch	n Olive bro 1).	own Sandstone fragments (up			B-3-2		2 4 4	8	67												
B-3-3 Becomes very stiff, Blocky and crumbles, Decrease is Sandstone fragments. B-3-3 7 5 16 67 14.3																							
- 10-	Becomes dark reddish brown, Dry, Medium plasticity, Hard, Blocky and crumbles. Presence of light gray Shale fragments.																						
12-	-	Becomes Presenc	dark redd e of Shale	ish brown and olive brown, fragments (up to 0.5 inch).			B-3-5		24 25 38	63	100						70.0	23.9	6.1	10.4	32	21	11
14- - 16-	940	SILT WIT brown to coarse s Sandsto	H GRAVE tan, Dry, and and fi ne fragme	L AND SAND (ML), Olive Hard, Presence to fine to ine to coarse Shale and ints.			B-3-6	Z	19 50/4	50	100						19.9	29.4	50.7	5.3	31	20	11
- 18		-				1111																	
20-	935	-												Auger refusal at 19 ft bgs. Switch to rock coring.									
- 28-		-																					
30- CC EC DF	925 ONTF QUIPI RILL AME	RACTOR MENT MTHD. TER	Horn & Diedric Hollow 8 inche	Associates h D-50 Stem Auger ss	LAT LON COC	ritud Ngitu Ordin	E: 39 IDE: -80 IATE S1	.275 0.63 7ST	598 379 EM:		NOT	ES:											

									PRO	DJE	CT	A	CPS	P IMP 9.3 B-3 SHP TL-635			ę	SHEE	:120	0F 3	3
	GS	CONSU		Houston Tel: (28	Texas 7707 1) 920-4601	7	<u> </u>		NUI LOC STA FIN	MBE CAT ART	ER TION DR	T) I D ILL	KG0 odd DA	1007 Iridge County, WV NTE 10/15/2016 TE 10/16/2016	gro Toi Da ⁻	ound P of C Tum F	SUR ASIN	F. 95 IG we M	i5 SL		
	RO	CK-5910			- Doning		9											TINUU			
DEPTH (ft-bgs)	ELEVATION (ft)	1) Formation 2) Rock Nar 3) Color 4) Grain Siz 5) Bedding	DESCI n, Member ne e/Percentage	6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Minu Discoloratio	n eralization, on, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ΗΛΟΕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
	954 . 953 . 952 . 951 . 951 . 951 . 951 . 951 . 951 . 951 . 951 . 943 . 944 . 943 . 944 . 943 . 944 . 943 . 944 . 943 . 943 . 944 . 938 . 938 . 938 . 936 . 936 . 933 . 933 . 933 . 933 . 933 . 933 . 933 . >933 .	SHALE, Dark to Sandstones (10 o localized FeOx in Becomes dark ol clay seam at 23.5 Becomes dark gr Fracture sets becomes reddist	greenish gray, legrees), 10 de the fracture pla is the bas. ay to gray, 40 c ome 10 to 20 c brown due to the second second second brown due to the second second second second brown due to the second second second second second second brown due to the second sec	Very thin interbedo grees close fractur anes. ence of 1-inch thic legree fracture sets legrees. the presence of Fe	ded e sets with k dark brown s. Ox.			R-1	6.5	6.5	100	49	7								
30-	926 _ 925		<u>.</u>																		
	ONTRA QUIPN RILL M AMET	ACTOR Horn IENT Died ITHD. Rock IER 8 inc	& Associate ich D-50 Coring hes	es l l (LATITUDE: LONGITUDE: COORDINATE	39.27 -80.63 SYST	598 3379 EM:		NOT	TES	:										

	<u> </u>		mtaal				во	RIN	G	S	H	P MP 9.3 B-3			s	HEE	Т 3 (DF 3		
			yrllec " nsultants	11490 Westheimer Houston Texas 770 Tel: (281) 920-460	Road 77 1	~		PRO NUI LOO STA	OJE MBI CAT ART			CP: (G0 odd DA	SHP TL-635 007 ridge County, WV TE 10/15/2016	GROI TOP (DATL	und : Of C. JM Fi	SURF ASIN t abov	 95 G ve MS	5 SL		
	R	OCK-5910	Ар	pendix D - Bonni		9			SAM				12 10/10/2010			CONT	-11111		T A	
DEPTH (ft-bgs)	ELEVATION (ft)	1) Fo 2) R 3) C 4) G 5) Bo	DESC ormation, Member ock Name olor rain Size/Percentage edding	RIPTION 6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
	924	Bedding p fractured.	planes become 10 to 2	0 degrees, Platy, Intensely			R-3	5	5	100	40	4								
	923	_																		
	922	Becomes	dark gray, Closely frac	ctured.																
- 35 -	920	SANDST Shale bet	ONE, Greenish gray, V ween 35 to 35.3 ft bgs	Vavy bedding, Presence of and 38.7 and 39.0 ft bgs,																
·	919	Presence	of sporadic Shale clas	sts and seams (up to 2-inches).			R-4	10	10	100	79	10								
	918	-																		
	917	Becomes	dark grav to grav. 20 g	learees waw bedding. Black coal																
	916	seams al	ong fracture planes.	legrees wavy bedding, black coar																
40-	914																			
	913	SHALE, interbedd	Dark gray to black, 10 ed Sandstone, Closely	degree thin bedding with fractured (10 degrees).																
	912	-																		
.	911	-																		
45-	910	-																		
·	909	-					R-5	10	10	100	98	4								
·	908	-																		
·	907	- Decrese i	n interhedded Sandsto																	
	906		The bedded Sandsic	лю.																
50-	904]											Termination depth at 50.5 ft							
11/62	903	_											bgs.							
./4 14/	902	-																		
	901	-																		
55 -	900	-																		
	899	-																		
E ROCK	898	1																		
N N	897	1																		
NG LO	895	1.																		
	onti Quip Rill Ame DGG	RACTOR MENT MTHD. ETER ER	Horn & Associate Diedrich D-50 Rock Coring 8 inches Jared Warner	es LATITUDE: LONGITUDE COORDINAT REVIEWER Jared War	39.27 -80.63 E SYST ner	598 3379 F EM:		NO	FES	SHE	ET F	FOR	SYMBOLS AND ABBREVIATIO	INS						

APPENDIX E

LABORATORY TEST RESULTS

November 30, 2016

Project No. 2016-527-001

Mustafa Erten Geosyntec Consultants, Inc. 11490 Westheimer Rd., Suite 150 Houston, TX 77077

<u>Transmittal</u> Laboratory Test Results ACP TXG0007

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted, *Geotechnics, Inc*.

David R. Backstrom Laboratory Director

We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

MOISTURE CONTENT

ASTM D 2216-10

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2016-527-001

Lab ID:	027	028	029	030	031
Boring No.:	B-1(MP9.3)	B-1(MP9.3)	B-2(MP9.3)	B-2(MP9.3)	B-2(MP9.3)
Depth (ft):	7.5	9.6	1.5	5.0	9.5
Sample No.:	B-1-3	B-1-4	B-2-1	B-2-2	B-2-4
Tare Number	28	14	15	1	27
Wt. of Tare & Wet Sample (g)	61.33	46.84	43.04	63.25	74.25
Wt. of Tare & Dry Sample (g)	55.43	44.24	37.86	56.29	68.32
Weight of Tare (g)	6.85	6.93	6.95	6.82	6.86
Weight of Water (g)	5.90	2.60	5.18	6.96	5.93
Weight of Dry Sample (g)	48.58	37.31	30.91	49.47	61.46
Water Content (%)	12.1	7.0	16.8	14.1	9.6

Lab ID	032	033	034	035	036
Boring No.	B-2(MP9.3)	B-3(MP9.3)	B-3(MP9.3)	B-3(MP9.3)	B-3(MP9.3)
Depth (ft)	11.2	2.5	7.5	13.0	14.9
Sample No.	B-2-5	B-3-1	B-3-3	B-3-5	B-3-6
Tare Number	26	25	24	16	17
Wt. of Tare & Wet Sample (g)	40.55	50.79	70.46	67.56	52.06
Wt. of Tare & Dry Sample (g)	38.89	43.85	62.51	61.84	49.78
Weight of Tare (g)	6.85	6.84	6.85	6.90	6.97
Weight of Water (g)	1.66	6.94	7.95	5.72	2.28
Weight of Dry Sample (g)	32.04	37.01	55.66	54.94	42.81
Water Content (%)	5.2	18.8	14.3	10.4	5.3

Notes :

Tested By

PC

11/10/16 Checked By

Date 11/11/16

TMP

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

Date

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C (Modified to report Unit Weight)

This method does not report strain rate or deformation

Sample Prep and Conformance Verification: ASTM D4543-08

Client: Client Project: Project No.: Lab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-009		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP 9.3) 31.7-32.7 R-4 a: As Received-Unpreser	ved
Specimen	Weight (g):	459.30			
SPECIME	N LENGTH (in)		SPE	CIMEN DIAMETER (in):	
	Reading 1:	4.02		Reading 1:	1.83
	Reading 2:	4.03		Reading 2:	1.83
	Reading 3:	4.02		Average:	1.83
	Average:	4.02		Area (in ²):	2.64
				L/D:	2.19
MOISTURE	<u>ECONTENT</u>				
Tare Numb	er:	1692		Total Load (lb):	23,610
Wt. of Tare	& Wet Sample (g):	534.61	Uniaxial Comp	pressive Strength (psi):	8,940
Wt. of Tare	& Dry Sample (g):	529.89			
Weight of T	are (g):	82.61		Fracture Type:	Shear
Weight of V	Vet Sample (g):	452.00			
Sample Vol	lume (cm ³):	174.09		Rate of Loading (lb/sec):	168
Moisture Co	ontent (%):	1.06		Time to Break (min:sec):	2:20.25
Unit Wet W	/eight (g/cm ³):	2.638	Devia	tion From Straightness ² :	< 0.02
Unit Wet W	eight (pcf):	164.6			
Unit Dry W	/eight (g/cm ³):	2.611	AXIAL: Pass	TOP: Pass	BOTTOM: Pass
Unit Dry W	/eight (pcf):	162.9			

Physical Description: Gray Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Deviation from straightness, Procedure A of ASTM D 4543-08 Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail
- 3) Temperature is laboratory room temperature.
- 4) Geotechnics Equipment Used: G788 Compression Tester,
- G1122 Digital Calipers, G1380 Dial Guage,
- G1557 Straight Edge, G1571 Feeler Gauge,

G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	AJD	Date: 11/16/16	Checked By:	CLK	Date: 11/17/16
page 1 of 1	DCN: CT45AUWT; Revisi	on No.: 1e Revision Date: 8/25/15			

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-010 Boring No.: B-1 (MP 9.3) Depth (ft): 31.7-32.7 Sample No.: R4 Test 1 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	INITIAL SAMPLE DIMENSIONS			MOISTURE CONTENT	
Length (in): Length (in): Length (in): Avg. Length (in):	1.270 1.274 1.266 1.270	Top Diam (in): Mid Diam (in): Bot Diam (in): Avg. Diam (in): Area (in2):	1.837 1.840 1.842 1.840 2.658	Tare No.: Weight Tare & Wet Sample (g): Weight of Tare & Dry Sample (g): Weight of Tare (g): Moisture (%):	3219 152.01 150.33 6.78 1.2
Thickness to Diame	eter Ratio:	0.69 \$	Shall be app	roximately 0.2 - 0.75	
Weight of Prepared	Cylinder (g):	145.4		Rate of Loading (lb/sec): Rate of Loading (lb/min);	91.0 5460
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec):	0:40.28
		LOAD (Ib)		Splitting Tensile Strength (psi)	

3660

Tested By	AJD	Date 1	1/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	crete Date: 8/30/12 R	evision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-011 Boring No.: B-1 (MP 9.3) Depth (ft): 31.7-32.7 Sample No.: R4 Test 2 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	INITIAL SAMPLE DIMENSIONS			MOISTURE CONTENT	
Length (in): Length (in): Length (in): Avg. Length (in):	1.264 1.258 1.260 1.261	Top Diam (in): Mid Diam (in): Bot Diam (in): Avg. Diam (in): Area (in2):	1.837 1.838 1.842 1.839 2.656	Tare No.:30Weight Tare & Wet Sample (g):152Weight of Tare & Dry Sample (g):150Weight of Tare (g):6Moisture (%):6	051 2.65 0.35 3.46 <u>1.6</u>
Thickness to Diame	eter Ratio:	0.69	Shall be appr	proximately 0.2 - 0.75	
Weight of Prepared	Cylinder (g):	146.3		Rate of Loading (lb/sec): 97.0 Rate of Loading (lb/min): 5820	
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec): 0:31.6	8
		LOAD (Ib)		Splitting Tensile Strength (psi)	

3060

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	crete Date: 8/30/1	2 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-012 Boring No.: B-1 (MP 9.3) Depth (ft): 31.7-32.7 Sample No.: R4 Test 3 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	INITIAL SAMPLE DIMENSIONS			MOISTURE CONTENT
Length (in):	1.307	Top Diam (in):	1.844	Tare No.: 3177
Length (in):	1.310	Mid Diam (in):	1.845	Weight Tare & Wet Sample (g): 157.73
Length (in):	1.312	Bot Diam (in):	1.846	Weight of Tare & Dry Sample (g): 155.39
Avg. Length (in):	1.310	Avg. Diam (in):	1.845	Weight of Tare (g): 6.87
		Area (in2):	2.674	Moisture (%): 1.6
Thickness to Diame	eter Ratio:	0.71 S	Shall be app	proximately 0.2 - 0.75
Weight of Prepared	Cylinder (g):	150.9		Rate of Loading (lb/sec): 97.0
Location/Type of Fa	ailure:	Center / Split		Rate of Loading (Ib/min): 5820
				Time to Break (min:sec): 0:24.78
		LOAD (Ib)		Splitting Tensile Strength (psi)

2400

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Con	crete Date: 8/30/	12 Revision: 0				

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C (Modified to report Unit Weight)

This method does not report strain rate or deformation

Sample Prep and Conformance Verification: ASTM D4543-08

Specimen Weight (g):442.20SPECIMEN LENGTH (in)SPECIMEN DIAMETER (in):Reading 1:3.96Reading 2:3.96Reading 3:3.96Average:1.3Average:3.96	
SPECIMEN LENGTH (in)SPECIMEN DIAMETER (in):Reading 1:3.96Reading 1:1.Reading 2:3.96Reading 2:1.Reading 3:3.96Average:1.Average:3.96Area (in²):2.	
Reading 1: 3.96 Reading 1: 1. Reading 2: 3.96 Reading 2: 1. Reading 3: 3.96 Average: 1. Average: 3.96 Area (in ²): 2.	
Reading 2: 3.96 Reading 2: 1. Reading 3: 3.96 Average: 1. Average: 3.96 Area (in ²): 2.	37
Reading 3: 3.96 Average: 1. Average: 3.96 Area (in²): 2.	37
Average: 3.96 Area (in ²): 2.1	37
	73
L/D: 2.	12
MOISTURE CONTENT	
Tare Number: 875 Total Load (lb): 27,0	060
Wt. of Tare & Wet Sample (g): 549.55 Uniaxial Compressive Strength (psi): 9,9	00
Wt. of Tare & Dry Sample (g): 545.76	
Weight of Tare (g): 110.43 Fracture Type: Con	e split
Weight of Wet Sample (g): 439.12	
Sample Volume (cm ³): 177.23 Rate of Loading (lb/sec): 13	37
Moisture Content (%): 0.87 Time to Break (min:sec): 3:17	' .40
Unit Wet Weight (g/cm ³): 2.495 Deviation From Straightness ² : > 0.0)2
Unit Wet Weight (pcf): 155.7	
Unit Dry Weight (g/cm ³): 2.473 AXIAL: Fail TOP: Pass BOT	
Unit Dry Weight (pcf): 154.3	TOM: Pass

Physical Description: Gray Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Deviation from straightness, Procedure A of ASTM D 4543-08 Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail
- 3) Temperature is laboratory room temperature.
- 4) Geotechnics Equipment Used: G788 Compression Tester,
- G1122 Digital Calipers, G1380 Dial Guage,
- G1557 Straight Edge, G1571 Feeler Gauge,

G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	AJD	Date:	11/16/16	Checked By:	CLK	Date: 11/17/16
page 1 of 1	DCN: CT45AUWT; Revis	ion No.: 1e Revision Date:	8/25/15			

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-014 Boring No.: B-2 (MP 9.3) Depth (ft): 17.1-18.1 Sample No.: R1 Test 1 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	AMPLE DIMENS	SIONS		MOISTURE CONTENT		
Length (in): 1.294		Top Diam (in):	1.863	Tare No.:	3012	
Length (in):	1.295	Mid Diam (in):	1.862	Weight Tare & Wet Sample (g):	150.10	
Avg. Length (in):	1.290	Avg. Diam (in): Avg. Diam (in): Area (in2):	1.862 1.862 2.724	Weight of Tare & Dry Sample (g): Weight of Tare (g): Moisture (%):	148.89 6.63	
Thickness to Diame	eter Ratio:	0.69 \$	Shall be app	roximately 0.2 - 0.75		
Weight of Prepared	l Cylinder (g):	143.7		Rate of Loading (lb/sec):	99.0	
Location/Type of Fa	ailure:	Center / Split		Rate of Loading (lb/min):	5940	
				Time to Break (min:sec):	0:28.5	
		LOAD (lb)		Splitting Tensile Strength (psi)		

2830

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	rete Date: 8/30/	12 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-015 Boring No.: B-2 (MP 9.3) Depth (ft): 17.1-18.1 Sample No.: R1 Test 2 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SA	INITIAL SAMPLE DIMENSIONS			MOISTURE CONTENT	
Length (in): Length (in): Length (in): Avg. Length (in):	1.336 1.334 1.331 1.334	Top Diam (in): Mid Diam (in): Bot Diam (in): Avg. Diam (in): Area (in2):	1.862 1.861 1.864 1.862 2.724	Tare No.: Weight Tare & Wet Sample (g): Weight of Tare & Dry Sample (g): Weight of Tare (g): Moisture (%):	3057 154.99 153.75 6.49 0.8
Thickness to Diame	eter Ratio:	0.72 \$	Shall be app	roximately 0.2 - 0.75	
Weight of Prepared	Cylinder (g):	148.6		Rate of Loading (lb/sec):	128.0
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec):	0:25.3
		LOAD (Ib)		Splitting Tensile Strength (psi)	

3250

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Cond	crete Date: 8/30/	12 Revision: 0				

ASTM D3967-08

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-016 Boring No.: B-2 (MP 9.3) Depth (ft): 17.1-18.1 Sample No.: R1 Test 3 Visual Description: Rock Core Moisture Condition: AS RECEIVED-UNPRESERVED

INITIAL SAMPLE DIMENSIONS				MOISTURE CONTENT	
Length (in):	1.266	Top Diam (in):	1.864	Tare No.:	3178
Length (in):	1.269	Mid Diam (in):	1.862	Weight Tare & Wet Sample (g):	149.83
Length (in):	1.271	Bot Diam (in):	1.862	Weight of Tare & Dry Sample (g):	148.31
Avg. Length (in):	1.269	Avg. Diam (in):	1.863	Weight of Tare (g):	6.84
		Area (in2):	2.725	Moisture (%):	1.1
Thickness to Diame Weight of Prepared	eter Ratio: I Cylinder (g):	0.68 \$ 143.0	Shall be app	roximately 0.2 - 0.75 Rate of Loading (lb/sec):	122.0
Location/Type of Fa	ailure:	Center / Split		Time to Break (min:sec):	0:25.45
		LOAD (Ib)		Splitting Tensile Strength (psi)	
		0400		005.44	

3100

Tested By	AJD	Date	11/16/16	Input Checked By	CLK	Date	11/17/16
page 1 of 1	DCN: CT-S68Concre	ete Date: 8/30/	12 Revision: 0				

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-027 Boring No.:B-1 (MP 9.3)Depth (ft):7.5Sample No.:B-1-3Soil Color:Reddish Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-027 Boring No.:B-1 (MP 9.3)Depth (ft):7.5Sample No.:B-1-3Soil Color:Reddish Brown

PERCENT SAND

USDA SUMMARY								
Particle	Percent		Actual	Corrected % of Minus 2.0 mm				
Size (mm)	Finer		Percentage	material for USDA Classification				
		Gravel	3.92					
2	96.08	Sand	4.44	4.62				
0.05	91.63	Silt	62.43	64.98				
0.002	29.20	Clay	29.20	30.39				

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-1 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	7.5
Project No.:	2016-527-001	Sample No.:	B-1-3
Lab ID:	2016-527-001-027	Soil Color:	Reddish Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material			
Tare No.:	1555	Tare No.:	NA		
Wt. of Tare & Wet Sample (g):	406.96	Weight of Tare & Wet Sample (g):	0.00		
Wt. of Tare & Dry Sample (g):	378.18	Weight of Tare & Dry Sample (g):	0.00		
Weight of Tare (g):	147.30	Weight of Tare (g):	0.00		
Weight of Water (g):	28.78	Weight of Water (g):	0.00		
Weight of Dry Soil (g):	230.88	Weight of Dry Soil (g):	0.00		
Moisture Content (%):	12.5	Moisture Content (%):	0.0		
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	230.88		
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	217.74		
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	13.14		
Dry Weight of + 3/4" Sample (g):	0.00				
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA		

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00		0.00	0.00	100.00	100.0
3/8"	9.5	4.83		2.09	2.09	97.91	97.9
#4	4.75	1.45		0.63	2.72	97.28	97.3
#10	2	2.78		1.20	3.92	96.08	96.1
#20	0.85	0.96	(**)	0.42	4.34	95.66	95.7
#40	0.425	0.43		0.19	4.53	95.47	95.5
#60	0.25	0.37		0.16	4.69	95.31	95.3
#100	0.15	0.75		0.32	5.01	94.99	95.0
#140	0.106	0.76		0.33	5.34	94.66	94.7
#200	0.075	0.81		0.35	5.69	94.31	94.3
Pan	-	217.74		94.31	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	HL	Date	11/14/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dignied Conscienting RES20 06-527-001 ACP TXG0007\draft\2016-527-001-027 Grain SieveHyd J D6913 DONE.xlsjPrint Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-1 (MP 9.3)
Project No.:	2016-527-001	Sample No.:	7.5 B-1-3
Lab ID:	2016-527-001-027	Soil Color:	Reddish Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	49.5	22.3	5.97	8.1	0.0377	95.2	89.8
2	48.0	22.3	5.97	8.4	0.0271	91.9	86.7
4	46.5	22.3	5.97	8.7	0.0195	88.6	83.6
15	40.0	22.3	5.97	9.9	0.0107	74.4	70.2
30	36.0	22.3	5.97	10.6	0.0078	65.7	61.9
60	32.0	22.3	5.97	11.3	0.0057	56.9	53.7
240	24.0	22.4	5.93	12.7	0.0030	39.5	37.3
1440	16.0	22.7	5.82	14.2	0.0013	22.3	21.0

Soil Specimen Data

Tare No.:	970	Percent Finer than # 200:	94.31
Wt. of Tare & Dry Material (g):	150.23		
Weight of Tare (g):	100.01	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	45.22		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 375
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ΤО

Tested By

11/16/16

Date

Checked By

KC

11/21/16

0

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Re Project N	Geosyntec Consultants, Inc. Reference: ACP TXG0007 No.: 2016-527-001				Boring No.: Depth (ft): Sample No.:	B-1 (MP 9.3 7.5 B-1-3)		
Lab ID:		2016-527-00	1-027 hio toot rofor	a anhi ta	S. the minue A	oil Description:	REDDISH B	ROWN LEA	N CLAY
Note: In	terial See the	ooi used with ti Sieve and Hy	nis test refer drometer An	s only to alvsis" c	the minus N Branh nage fi	10. 40 or the complete	(Minus No. 40	sieve material,	Air dried)
	As Receiv	ed Moistur	e Content			Liqui	d Limit Te	st	
	AST	TM D2216-10			1	2	3	M	
Tare Nu	mber:		28		158	44	191	U	
Wt. of Ta	are & Wet Sai	mple (g):	61.33	3	37.65	37.56	37.58	L	
Wt. of Ta	are & Dry San	nple (g):	55.43	3	32.01	31.99	32.18	Т	
Weight c	of Tare (g):		6.85		17.49	17.44	17.57	I	
Weight c	of Water (g):		5.9		5.6	5.6	5.4	Р	
Weight c	of Dry Sample	e (g):	48.6		14.5	14.6	14.6	0	
Was As	Received MC	Preserved:	Yes					1	
Moistur	e Content (%) :	12.1		38.8	38.3	37.0	N	
Number	of Blows:				20	26	35	<u> </u>	
Plastic	: Limit Tes	t	1	2	Range		Test Resu	ults	
Tare Nu	mber:		226	234			Liquid Limi	t (%):	38
Wt. of Ta	are & Wet Sa	mple (g):	25.64	26.23					
Wt. of Ta	are & Dry San	nple (g):	24.54	25.11			Plastic Lim	it (%):	21
Weight c	of Tare (g):		19.33	19.87				. ,	
Weight c	of Water (g):		1.1	1.1			Plasticity In	idex (%):	17
Weight c	of Dry Sample	e (g):	5.2	5.2					
		_					USCS Syml	ool:	CL
Moistur	e Content (%):	21.1	21.4	-0.3				
Note: Th	ne acceptable	range of the t	wo Moisture	contents	s is ± 2.6			<u> </u>	
		Flow Curve				P	asticity Cha	rt	
40	F				60		- i		
38									
					50 -		;	/	
36						CL	, , , , , , , , , , , , , , , , , ,	н 🖊	
s ³⁴					€ 40				
5 12 32					6) ¥0				
nte					pu		.: I I	·	
° 30					0° it				
28 ate					stic	,		INIH	
> ₂₆					P 20				
24					-				
24					10				
22	E	┼┼┼┼┼┨		++++					
20	E					ML			
	1	10		100	0	20 40	60	80	100
		Number of Blo	ows		CL- ML	Liq	uid Limit (%)		

 Tested By
 RAL
 Date
 11/16/16
 Checked By
 TMP
 Date
 11/17/16

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-028 Boring No.:B-1 (MP 9.3)Depth (ft):9.6Sample No.:B-1-4Soil Color:Reddish Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-028 Boring No.:B-1 (MP 9.3)Depth (ft):9.6Sample No.:B-1-4Soil Color:Reddish Brown

PERCENT SAND

			USDA SUMMARY	
Particle	Percent		Actual	Corrected % of Minus 2.0 mm
Size (mm)	Finer		Percentage	material for USDA Classification
		Gravel	9.56	
2	90.44	Sand	10.48	11.58
0.05	79.97	Silt	55.35	61.20
0.002	24.62	Clay	24.62	27.22
2 0.05 0.002	90.44 79.97 24.62	Gravel Sand Silt Clay	9.56 10.48 55.35 24.62	11.58 61.20 27.22

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-1 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	9.6
Project No.:	2016-527-001	Sample No.:	B-1-4
Lab ID:	2016-527-001-028	Soil Color:	Reddish Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material		
Tare No.:	1487	Tare No.:	NA	
Wt. of Tare & Wet Sample (g):	358.71	Weight of Tare & Wet Sample (g):	0.00	
Wt. of Tare & Dry Sample (g):	358.71	Weight of Tare & Dry Sample (g):	0.00	
Weight of Tare (g):	147.15	Weight of Tare (g):	0.00	
Weight of Water (g):	0.00	Weight of Water (g):	0.00	
Weight of Dry Soil (g):	211.56	Weight of Dry Soil (g):	0.00	
Moisture Content (%):	0.0	Moisture Content (%):	0.0	
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	211.56	
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	173.81	
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	37.75	
Dry Weight of + 3/4" Sample (g):	0.00			
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA	

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	9.39		4.44	4.44	95.56	95.6
3/8"	9.5	3.62		1.71	6.15	93.85	93.9
#4	4.75	0.46		0.22	6.37	93.63	93.6
#10	2	6.75		3.19	9.56	90.44	90.4
#20	0.85	4.85	(**)	2.29	11.85	88.15	88.1
#40	0.425	4.45		2.10	13.95	86.05	86.0
#60	0.25	2.97		1.40	15.36	84.64	84.6
#100	0.15	2.55		1.21	16.56	83.44	83.4
#140	0.106	1.38		0.65	17.21	82.79	82.8
#200	0.075	1.33		0.63	17.84	82.16	82.2
Pan	-	173.81		82.16	100.00	-	-

(*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample Notes : (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

	Tested By	HL	Date	11/17/16	Checked By	KC	Date	11/21/16
page 3 of 4		DCN: CT-S73J,	DATECI COSSUCTAR	E2/006-527-001 ACF	P TXG0007\draft\[2016-527	-001-028 Grain SieveHyd	J D6913 DONE.xls]	Print Sheet 6913 & 7928-J

DCN: CT-S73J, Divited 005/state and 500 06-527-001 ACP TXG0007/draft/2016-527-001-028 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-1 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	9.6
Project No.:	2016-527-001	Sample No.:	B-1-4
Lab ID:	2016-527-001-028	Soil Color:	Reddish Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	51.0	22.3	5.97	7.9	0.0371	95.4	78.4
2	48.5	22.3	5.97	8.3	0.0270	90.1	74.0
4	44.5	22.3	5.97	9.0	0.0199	81.6	67.0
15	39.5	22.3	5.97	9.9	0.0108	71.0	58.3
30	35.5	22.3	5.97	10.7	0.0079	62.5	51.4
60	31.0	22.3	5.97	11.5	0.0058	53.0	43.6
240	23.0	22.4	5.93	12.9	0.0031	36.1	29.7
1440	17.0	22.7	5.82	14.0	0.0013	23.7	19.5

Soil Specimen Data

Tare No.:	2331	Percent Finer than # 200:	82.16
Wt. of Tare & Dry Material (g):	144.99		
Weight of Tare (g):	93.30	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	46.69		

Notes: Hydrometer test is performed on - # 200 sieve material.

G- 1159
G- 206
G- 1505
G- 1057
G- 1718
No

ТΟ

Tested By

0

Date 11/16/16 Checked By

KC

Date

0

11/21/16

ATTERBERG LIMITS

ASTM D 4318-10

Client Reference: ACP TXG0007 Depth (ft): 9.6 Project No.: 2016-527-001 Sample No.: B-1-4 Lab ID: 2016-527-001-028 Soil Description: REDDISH BROWN LEAL Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, A	N CLAY Air dried)
sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description .	
As Received Moisture Content Liquid Limit Test	
ASTM D2216-10 I Z J W	
1 are Number: 14 207 164 246 U 1/4 207 164 246 U	
Wt. of Tare & Wet Sample (g): 46.84 38.89 37.54 37.66 L W/4 of Tare & Dry Completing (g): 44.94 23.20 20.00 20.40 T	
Wt. of Tare & Dry Sample (g): 44.24 33.39 32.20 32.43 I Woright of Tare (g): 6.02 18.27 17.44 17.54 I	
Weight of Tare (g): 6.93 18.37 17.41 17.51 I Weight of Mater (a): 0.0 5.5 5.0	
Weight of Water (g): 2.6 5.5 5.3 5.2 P Weight of Water (g): 07.0 45.0 44.0 0	
Weight of Dry Sample (g): 37.3 15.0 14.8 14.9 U	
was as Received MC Preserved: Yes	
Moisture Content (%): 7.0 36.6 36.1 35.1 N	
Number of Blows: 15 24 31 I	
Plastic Limit Test 1 2 Pange Test Posults	
Tare Number: 224 2	36
Wt of Tare & Wet Sample (a): 26.08 25.54	50
Wt. of Tare & Dry Sample (g): 25.09 24.59 Plastic Limit (%):	19
Weight of Tare (a) : 10.77 10.47	15
Weight of Vater (a) : 10.009	17
Weight of Dry Sample (a): 53 , 51	
UISCS Symbol:	CI
Moisture Content (%): 18.6 18.6 0.1	0L
Note: The accentable range of the two Moisture contents is ± 2.6	
Flow Curve Plasticity Chart	
	,
³⁴ CH	
₩H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	_

RAL

10

Number of Blows

Date

11/14/16

24

22

20

Tested By

1

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

11/15/16

80

100

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

Checked By

10

0

0

CL- ML

100

 \otimes

ML

40

Liquid Limit (%)

Date

60

20

TMP

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-029 Boring No.:B-2 (MP 9.3)Depth (ft):1.5Sample No.:B-2-1Soil Color:Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-029 Boring No.:B-2 (MP 9.3)Depth (ft):1.5Sample No.:B-2-1Soil Color:Brown

PERCENT SAND

			USDA SUMMARY	
Particle	Percent		Actual	Corrected % of Minus 2.0 mm
Size (mm)	Finer		Percentage	material for USDA Classification
		Gravel	32.47	
2	67.53	Sand	16.56	24.52
0.05	50.97	Silt	33.30	49.31
0.002	17.67	Clay	17.67	26.17
0.05 0.002	50.97 17.67	Silt Clay	33.30 17.67	49.31 26.17

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	1.5
Project No.:	2016-527-001	Sample No.:	B-2-1
Lab ID:	2016-527-001-029	Soil Color:	Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material				
Tare No.:	1414	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	292.63	Weight of Tare & Wet Sample (g):	0.00			
Wt. of Tare & Dry Sample (g):	292.63	Weight of Tare & Dry Sample (g):	0.00			
Weight of Tare (g):	145.22	Weight of Tare (g):	0.00			
Weight of Water (g):	0.00	Weight of Water (g):	0.00			
Weight of Dry Soil (g):	147.41	Weight of Dry Soil (g):	0.00			
Moisture Content (%):	0.0	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	147.41			
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	103.56			
Wet Weight of +3/4" Sample (g):	25.84	Weight of plus #200 Material (g):	43.85			
Dry Weight of + 3/4" Sample (g):	25.84					
Total Dry Weight of Sample (g):	25.8	J - Factor (Percent Finer than 3/4"):	NA			

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	25.84		17.53	17.53	82.47	82.5
3/4"	19	0.00		0.00	17.53	82.47	82.5
1/2"	12.5	11.07		7.51	25.04	74.96	75.0
3/8"	9.5	0.00		0.00	25.04	74.96	75.0
#4	4.75	1.83		1.24	26.28	73.72	73.7
#10	2	9.13		6.19	32.47	67.53	67.5
#20	0.85	9.77	(**)	6.63	39.10	60.90	60.9
#40	0.425	4.30		2.92	42.02	57.98	58.0
#60	0.25	2.41		1.63	43.65	56.35	56.3
#100	0.15	1.99		1.35	45.00	55.00	55.0
#140	0.106	1.51		1.02	46.03	53.97	54.0
#200	0.075	1.84		1.25	47.28	52.72	52.7
Pan	-	103.56		70.25	117.53	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Digitied Constitution RED20 06-527-001 ACP TXG0007\draft\[2016-527-001-029 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client: Client Reference:	Geosyntec Consultants, Inc. ACP TXG0007	Boring No.: Depth (ft):	B-2 (MP 9.3) 1.5
Project No.:	2016-527-001	Sample No.:	B-2-1
Lab ID:	2016-527-001-029	Soll Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	53.0	22.3	5.97	7.5	0.0362	94.0	49.6
2	49.5	22.3	5.97	8.1	0.0267	87.0	45.9
4	47.5	22.3	5.97	8.5	0.0193	83.0	43.8
15	41.5	22.3	5.97	9.6	0.0106	71.0	37.5
30	37.5	22.3	5.97	10.3	0.0077	63.0	33.2
68	32.5	22.3	5.97	11.2	0.0054	53.0	28.0
240	25.5	22.4	5.93	12.5	0.0030	39.1	20.6
1440	19.5	22.7	5.82	13.5	0.0013	27.3	14.4

Soil Specimen Data

Tare No.:	975	Percent Finer than # 200:	52.72
Wt. of Tare & Dry Material (g):	150.32		
Weight of Tare (g):	95.86	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	49.46		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 355
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ΤО

Tested By

0

Date 11/16/16 Checked By

KC

11/21/16

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec C	onsultants,	Inc.	E	Boring No.:	B-2 (MP 9.3)		
Client Reference:	ACP TXG00	07		Γ	Depth (ft):	1.5		
Project No.:	2016-527-00	1		9	Sample No.:	B-2-1		
Lab ID:	2016-527-00	1-029		So	il Description:	BROWN LEA	N CLAY	
Note: The USCS sym	bol used with t	his test refe	rs only to	the minus No	. 40	(Minus No. 40 si	eve material, A	Air dried)
sieve material. See the	e "Sieve and Hy	drometer A	nalysis" g	raph page for	the complete	material descri	ption .	
As Receiv	ed Moistur	e Conten	t		Liqui	d Limit Tes	t	
AS	TM D2216-10			1	2	3	М	
Tare Number:		15		166	241	160	U	
Wt. of Tare & Wet Sa	mple (g):	43.0	4	28.44	28.61	28.90	L	
Wt. of Tare & Dry Sar	mple (g):	37.8	6	25.63	25.83	26.17	T	
Weight of Tare (g):		6.9	5	18.38	18.52	18.54	I	
Weight of Water (g):		5.2	_	2.8	2.8	2.7	P	
Weight of Dry Sample	e (g):	30.9	9	7.3	7.3	7.6	0	
Was As Received MC	Preserved:	Yes	5				I	
Moisture Content (%	b):	16.8	8	38.8	38.0	35.8	N	
Number of Blows:				17	25	33	T	
Diantia Limit Tan	4	4	2	Dongo	i	Test Desul		
Plastic Limit Tes	τ		2	Range		lest Resul	IS IS	
Tare Number:		122	12			l iquid l imit ((%)•	37
Wt. of Tare & Wet Sa	mple (a):	25.08	25.83				[/ ··]	•
Wt. of Tare & Drv Sar	mple (a):	23.92	24.70			Plastic Limit	(%):	22
Weight of Tare (g):		18.67	19.73				(/•)-	
Weight of Water (g):		1.2	1.1			Plasticity Ind	ex (%):	15
Weight of Dry Sample	e (g):	5.3	5.0				()	
0 , 1						USCS Symbo	ol:	CL
Moisture Content (%	b):	22.1	22.7	-0.6		-		
Note: The acceptable	range of the t	wo Moisture	e contents	s is ± 2.6				
	Flow Curve				P	asticity Chart		
40				60				
38		$\overline{\otimes}$		-				
36				50	CI	<u>і си</u>		
- 34				·	OL			
8				8 40				
32 e				Tex l		· /		
to 30				u 30		:		
				city			мн	
Aate Aate				asti				
26				a 20				
24				-	. 🛇			
				10	· /			
22								
20 E				₀ ۷	ML			
1	10		100	0 /	20 40	60	80	100
	Number of BIG	JWS		CL- ML	Liqu	uid Limit (%)		

 Tested By
 RAL
 Date
 11/15/16
 Checked By
 TMP
 Date
 11/16/16

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-032 Boring No.:B-2 (MP 9.3)Depth (ft):11.2Sample No.:B-2-5Soil Color:Reddish Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-032 Boring No.:B-2 (MP 9.3)Depth (ft):11.2Sample No.:B-2-5Soil Color:Reddish Brown

PERCENT SAND

			USDA SUMMARY	
Particle	Percent		Actual	Corrected % of Minus 2.0 mm
Size (mm)	Finer		Percentage	material for USDA Classification
		Gravel	0.92	
2	99.08	Sand	9.02	9.10
0.05	90.06	Silt	56.29	56.81
0.002	33.78	Clay	33.78	34.09
2 0.05 0.002	99.08 90.06 33.78	Sand Silt Clay	9.02 56.29 33.78	9.10 56.81 34.09

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	11.2
Project No.:	2016-527-001	Sample No.:	B-2-5
Lab ID:	2016-527-001-032	Soil Color:	Reddish Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material				
Tare No.:	1460	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	298.43	Weight of Tare & Wet Sample (g):	0.00			
Wt. of Tare & Dry Sample (g):	298.43	Weight of Tare & Dry Sample (g):	0.00			
Weight of Tare (g):	142.63	Weight of Tare (g):	0.00			
Weight of Water (g):	0.00	Weight of Water (g):	0.00			
Weight of Dry Soil (g):	155.80	Weight of Dry Soil (g):	0.00			
Moisture Content (%):	0.0	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	155.80			
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	145.57			
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	10.23			
Dry Weight of + 3/4" Sample (g):	0.00					
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA			

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00		0.00	0.00	100.00	100.0
3/8"	9.5	0.00		0.00	0.00	100.00	100.0
#4	4.75	0.79		0.51	0.51	99.49	99.5
#10	2	0.64		0.41	0.92	99.08	99.1
#20	0.85	0.73	(**)	0.47	1.39	98.61	98.6
#40	0.425	0.82		0.53	1.91	98.09	98.1
#60	0.25	0.90		0.58	2.49	97.51	97.5
#100	0.15	1.04		0.67	3.16	96.84	96.8
#140	0.106	1.44		0.92	4.08	95.92	95.9
#200	0.075	3.87		2.48	6.57	93.43	93.4
Pan	-	145.57		93.43	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Digited 00454184 are 12/2016-527-001 ACP TXG0007\draft\2016-527-001-032 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	11.2
Project No.:	2016-527-001	Sample No.:	B-2-5
Lab ID:	2016-527-001-032	Soil Color:	Reddish Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	39.0	22.7	5.82	10.0	0.0417	94.8	88.5
2	37.5	22.7	5.82	10.3	0.0299	90.5	84.5
4	36.0	22.7	5.82	10.6	0.0214	86.2	80.5
15	32.0	22.7	5.82	11.3	0.0114	74.8	69.9
60	26.0	22.7	5.82	12.4	0.0060	57.6	53.9
90	24.5	22.9	5.75	12.6	0.0049	53.6	50.1
240	20.5	22.8	5.78	13.4	0.0031	42.0	39.3
1440	16.5	22.6	5.86	14.1	0.0013	30.4	28.4

Soil Specimen Data

Tare No.:	706	Percent Finer than # 200:	93.43
Wt. of Tare & Dry Material (g):	137.99		
Weight of Tare (g):	98.37	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	34.62		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 368
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ТΟ

Tested By

0

Date 11/17/16

Checked By

KC

11/21/16

Date

0

ONE POINT ATTERBERG LIMIT

ASTM D 4318-10 (SOP - S4)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2 (MP 9.3)		
Client Reference:	ACP TXG0007	Depth (ft):	11.2		
Project No.:	2016-527-001	Sample No.:	B-2-5		
Lab ID:	2016-527-001-032	Soil Description:	REDDISH BROWN SILT		
	(MInus No. 40 sieve material, Airdried)				

Liquid Limit Test	1	2	Blows	K-factor
Tare Number:	194	151	20	0.974
Weight of Tare & Wet Sample (g):	25.59	26.79	21	0.979
Weight of Tare & Dry Sample (g):	24.03	24.84	22	0.985
Weight of Tare (g):	19.29	18.86	23	0.990
Weight of Water (g):	1.56	1.95	24	0.995
Weight of Dry Sample (g):	4.74	5.98	25	1.000
			26	1.005
Moisture Content (%):	32.9	32.6	27	1.009
Number of Blows:	24	25	28	1.014
			29	1.018
			30	1.022

Plastic Limit Test	1	2	Range	Liquid Lim	it Test Results	
Tare Number: Weight of Tare & Wet Sample (g): Weight of Tare & Dry Sample (g): Weight of Tare (g): Weight of Water (g): Weight of Dry Sample (g):	1269 21.69 20.71 15.36 0.98 5.35	1273 28.96 27.85 21.88 1.11 5.97		Test 1 LL = LL ^{CORR} = Test 2	32.9 33	
Moisture Content (%):	18.3 two Moistu	18.6 re contents	-0.3 is ± 2.6	LL = LL ^{CORR} =	32.6 33	
Summary			As Received Moisture Content			
-			ASTM D2216-10			
Liquid Limit (%):	33		Tare Number:		26	
Plastic Limit (%):	18		Wt. of Tare & Wet Sample (g): Wt. of Tare & Dry Sample (g):		40.55 38.89	
Plasticity Index (%)	15		Weight of Tare (g):		6.85 1 7	
Flasticity index (70).	Plasticity index (%): 15		Weight of Dry Sample (g):		32.0	
USCS Symbol:			Was As Received	MC Preserved:	Yes	
;			Moisture Content	: (%):	5.2	
Tested By TO Date	11/14/16	Ch	ecked By TN	IP Date	11/16/16	

page 1 of 1 DCN: CT-S4A, Date 10/13/16, REV.: 6

S:\Excel\Excel QA\Spreadsheets\Limit 1 PT.xls

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-033 Boring No.:B-3 (MP 9.3)Depth (ft):2.5Sample No.:B-3-1Soil Color:Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-033 Boring No.:B-3 (MP 9.3)Depth (ft):2.5Sample No.:B-3-1Soil Color:Brown

PERCENT SAND

USDA SUMMARY								
Particle	Percent		Actual	Corrected % of Minus 2.0 mm				
Size (mm)	Finer		Percentage	material for USDA Classification				
		Gravel	12.19					
2	87.81	Sand	13.54	15.42				
0.05	74.26	Silt	47.05	53.58				
0.002	27.22	Clay	27.22	31.00				

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material				
Tare No.:	1452	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	352.04	Weight of Tare & Wet Sample (g):	0.00			
Wt. of Tare & Dry Sample (g):	318.51	Weight of Tare & Dry Sample (g):	0.00			
Weight of Tare (g):	145.16	Weight of Tare (g):	0.00			
Weight of Water (g):	33.53	Weight of Water (g):	0.00			
Weight of Dry Soil (g):	173.35	Weight of Dry Soil (g):	0.00			
Moisture Content (%):	19.3	Moisture Content (%):	0.0			
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	173.35			
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	134.44			
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	38.91			
Dry Weight of + 3/4" Sample (g):	0.00					
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA			

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	7.71		4.45	4.45	95.55	95.6
3/8"	9.5	0.00		0.00	4.45	95.55	95.6
#4	4.75	5.13		2.96	7.41	92.59	92.6
#10	2	8.30		4.79	12.19	87.81	87.8
#20	0.85	5.29	(**)	3.05	15.25	84.75	84.8
#40	0.425	2.78		1.60	16.85	83.15	83.1
#60	0.25	1.93		1.11	17.96	82.04	82.0
#100	0.15	2.38		1.37	19.34	80.66	80.7
#140	0.106	2.17		1.25	20.59	79.41	79.4
#200	0.075	3.22		1.86	22.45	77.55	77.6
Pan	-	134.44		77.55	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	HL	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dynted Cost Utantes 06-527-001 ACP TXG0007\draft\2016-527-001-033 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	2.5
Project No.:	2016-527-001	Sample No.:	B-3-1
Lab ID:	2016-527-001-033	Soil Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	49.0	22.3	5.97	8.2	0.0379	92.9	72.0
2	47.5	22.3	5.97	8.5	0.0273	89.6	69.5
4	44.5	22.3	5.97	9.0	0.0199	83.2	64.5
15	39.0	22.3	5.97	10.0	0.0108	71.3	55.3
35	34.5	22.3	5.97	10.8	0.0074	61.6	47.8
60	31.5	22.3	5.97	11.4	0.0058	55.1	42.7
240	25.5	22.4	5.93	12.5	0.0030	42.2	32.8
1440	18.5	22.7	5.82	13.7	0.0013	27.4	21.2

Soil Specimen Data

Tare No.:	2324	Percent Finer than # 200:	77.55
Wt. of Tare & Dry Material (g):	148.15		
Weight of Tare (g):	97.33	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	45.82		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 781
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ΤО

Tested By

0

Date 11/16/16 Checked By

KC

11/21/16

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec C	onsultants	s, Inc.	E	Boring No.:	B-3 (MP 9.3))	
Client Reference:	ACP TXG0007			0	Depth (ft):	2.5		
Project No.:	2016-527-001			5	Sample No.:	B-3-1		
Lab ID:	2016-527-00	1-033		Soi	il Description:	BROWN LEA	AN CLAY	
Note: The USCS syn	nbol used with t	his test ref	ers only to	the minus No	. 40	(Minus No. 40 s	sieve material,	Air dried)
sieve material. See th	e "Sieve and Hy	drometer .	Analysis" (graph page for	the complete	material desc	ription .	
As Receiv	ved Moistur	e Conte	nt		Liqui	d Limit Tes	st	
AS	STM D2216-10			1	2	3	М	
Tare Number:		2	5	202	247	243	U	
Wt. of Tare & Wet Sa	ample (g):	50.	79	37.65	39.69	38.92	L	
Wt. of Tare & Dry Sa	mple (g):	43.	85	31.53	33.74	33.17	т	
Weight of Tare (g):		6.8	34	17.30	19.15	18.88	I	
Weight of Water (g):		6.	9	6.1	6.0	5.8	Р	
Weight of Dry Sampl	e (g):	37	.0	14.2	14.6	14.3	0	
Was As Received M	C Preserved:	Ye	es				I	
Moisture Content (%	%):	18	.8	43.0	40.8	40.2	N	
Number of Blows:				15	24	31	<u> </u>	
Diantia Limit Tor	.4	4	2	Dense		Test Dest		
Plastic Limit Tes	ST	1	2	Range		lest Resu	lits	
Tara Numbar:		226	104			Liquid Limit	. /0/ \.	11
Wt of Tare & Wet Sa	ample (a).	220	24 96				. (/0).	41
Wt. of Tare & Dry Sa	mple (g):	20.00	23.71			Plastic I imi	t (%)·	24
Weight of Tare (g)	imple (g).	19.36	18.51				. (/0).	24
Weight of Water (g):		1.3	1.3			Plasticity In	dex (%):	17
Weight of Dry Sampl	e (a):	5.2	5.2					
	0 (9).	0.2	0.2			USCS Symb	ool:	CL
Moisture Content (%	%):	24.6	24.0	0.6		,		-
Note: The acceptable	, e range of the t	wo Moistu	re content	s is ± 2.6				
	Flow Curve				P	asticity Char	rt	
45 -				<u> </u>				
43				60				
				-				
40				50	01			
				-	CL		H	
8				\$ 40				
35				× ·				
offender in the second se						:		
Ŭ l				oc city			мн	
06 Jate				astio				
\$				ä ²⁰				
25				-				
				10				
20					ML			
1	10		100	0	20 40	0 60	80	100
	Number of Blo	ows		CL- ML	Liqu	uid Limit (%)		
	_					_		
Tested By RAL	Date	11/15/16	Chec	ked By	TMP	Date 1	1/16/16	

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-035 Boring No.:B-3 (MP 9.3)Depth (ft):13.0Sample No.:B-3-5Soil Color:Brown

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-035 Boring No.:B-3 (MP 9.3)Depth (ft):13.0Sample No.:B-3-5Soil Color:Brown

PERCENT SAND

			USDA SUMMARY	
Particle	Percent		Actual	Corrected % of Minus 2.0 mm
Size (mm)	Finer		Percentage	material for USDA Classification
		Gravel	6.04	
2	93.96	Sand	23.92	25.45
0.05	70.04	Silt	46.73	49.74
0.002	23.31	Clay	23.31	24.81
2 0.05 0.002	93.96 70.04 23.31	Gravel Sand Silt Clay	6.04 23.92 46.73 23.31	25.45 49.74 24.81

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	13.0
Project No.:	2016-527-001	Sample No.:	B-3-5
Lab ID:	2016-527-001-035	Soil Color:	Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material	
Tare No.:	1510	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	487.80	Weight of Tare & Wet Sample (g):	0.00
Wt. of Tare & Dry Sample (g):	457.30	Weight of Tare & Dry Sample (g):	0.00
Weight of Tare (g):	147.60	Weight of Tare (g):	0.00
Weight of Water (g):	30.50	Weight of Water (g):	0.00
Weight of Dry Soil (g):	309.70	Weight of Dry Soil (g):	0.00
Moisture Content (%):	9.8	Moisture Content (%):	0.0
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	309.70
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	222.83
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	86.87
Dry Weight of + 3/4" Sample (g):	0.00		
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00		0.00	0.00	100.00	100.0
3/8"	9.5	2.96		0.96	0.96	99.04	99.0
#4	4.75	2.51		0.81	1.77	98.23	98.2
#10	2	13.24		4.28	6.04	93.96	94.0
#20	0.85	21.15	(**)	6.83	12.87	87.13	87.1
#40	0.425	18.49		5.97	18.84	81.16	81.2
#60	0.25	11.93		3.85	22.69	77.31	77.3
#100	0.15	8.68		2.80	25.50	74.50	74.5
#140	0.106	4.21		1.36	26.86	73.14	73.1
#200	0.075	3.70		1.19	28.05	71.95	72.0
Pan	-	222.83		71.95	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	HL	Date	11/14/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Digitied Consciences Conscie

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	13.0
Project No.:	2016-527-001	Sample No.:	B-3-5
Lab ID:	2016-527-001-035	Soil Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	48.5	22.3	5.97	8.3	0.0382	95.6	68.8
2	47.0	22.3	5.97	8.6	0.0274	92.2	66.3
4	46.0	22.3	5.97	8.8	0.0196	90.0	64.7
15	41.0	22.3	5.97	9.7	0.0106	78.7	56.6
31	36.0	22.3	5.97	10.6	0.0077	67.5	48.6
60	32.5	22.3	5.97	11.2	0.0057	59.6	42.9
240	24.0	22.4	5.93	12.7	0.0030	40.6	29.2
1440	16.5	22.7	5.82	14.1	0.0013	24.0	17.3

Soil Specimen Data

Tare No.:	976	Percent Finer than # 200:	71.95
Wt. of Tare & Dry Material (g):	148.74		
Weight of Tare (g):	99.74	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	44.00		

Notes: Hydrometer test is performed on - # 200 sieve material.

G- 1159
G- 773
G- 1505
G- 1057
G- 1718
No

ΤО

Tested By

Date 11/16/16 Checked By

KC

11/21/16

0

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec Cor	sultants, Inc.			Boring No.:	B-3 (MP 9.3	3)	
Client Reference:	ACP TXG0007				Depth (ft):	13.0		
Project No.:	2016-527-001				Sample No.:	B-3-5		
Lab ID:	2016-527-001-0	035		So	oil Description:	: BROWN LE	EAN CLAY	
Note: The USCS syml	bol used with this	test refers only	to th	e minus N	o. 40	(Minus No. 40) sieve material, /	Air dried)
sieve material. See the	"Sieve and Hydr	ometer Analysis	" gra	ph page fo	or the complete	material des	cription .	
As Receiv	ed Moisture	Content		_	Liqu	id Limit Te	est	
AST	M D2216-10			1	2	3	Μ	
Tare Number:		16		209	355	144	U	
Wt. of Tare & Wet Sar	mple (g):	67.56		39.69	38.52	38.19	L	
Wt. of Tare & Dry San	nple (g):	61.84		34.64	33.55	33.38	T	
Weight of Tare (g):		6.90		19.31	18.18	17.99	I	
Weight of Water (g):		5.7		5.1	5.0	4.8	Р	
Weight of Dry Sample	(g):	54.9		15.3	15.4	15.4	0	
Was As Received MC	Preserved:	Yes					I	
Moisture Content (%):	10.4		32.9	32.3	31.3	N	
Number of Blows:				16	23	34	T	
Diactic Limit Tool	4	1 2		Dongo	i	Toot Doo		
	L	1 2		Range		Test Res	uits	
Tare Number:		192 121				l iquid l im	uit (%)·	32
Wt of Tare & Wet Sar	mple (a): 2	5 35 25 54	L			Eiquiu Liii		02
Wt of Tare & Dry San	nple (g): 2	4 25 24 50)			Plastic Lin	nit (%):	21
Weight of Tare (g):	1 (g).	8.93 19.44	Ĺ					
Weight of Water (g):		1.1 1.0				Plasticity I	ndex (%):	11
Weight of Dry Sample	(a):	5.3 5.1					(,,,,	
in original billion billion	(9).					USCS Svm	ıbol:	CL
Moisture Content (%	.): 2	20.7 20.6		0.1		,,,,,,,		
Note: The acceptable	, range of the two	Moisture conte	nts is	s ± 2.6				
	Flow Curve				P	lasticity Cha	art	
24				60				
54				60				
32				-			. I	
52		\mathbf{v}_{a}		50				
30				-	CL		сн	
% *			(%	40				
ut 28) xa					
oute			pu					
Ö			ity	30			RALI	
ate			stic	-				
≥			Pla	20				
24				-				
22				10	· 🚫			
					<u>·</u>			
20								
	10	10	0	0	20 4	0 60	80	100
	Number of Blows	6			Liq	uid Limit (%)		100
						. ,		

 Tested By
 RAL
 Date
 11/15/16
 Checked By
 TMP
 Date
 11/16/16

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-036 Boring No.:B-3 (MP 9.3)Depth (ft):14.9Sample No.:B-3-6Soil Color:Brown

	Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16
page 1 of 2		DCN: CT-S73J,	DiyiTieci Classilitarika	E2/006-527-001 ACF	P TXG0007\draft\[2016-5	27-001-036 Grain SieveHy	d J D6913 DONE.xl	s]Print Sheet 6913 & 7928-J

USDA CLASSIFICATION CHART

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2016-527-001 2016-527-001-036 Boring No.:B-3 (MP 9.3)Depth (ft):14.9Sample No.:B-3-6Soil Color:Brown

PERCENT SAND

			USDA SUMMARY	
Particle	Percent		Actual	Corrected % of Minus 2.0 mm
Size (mm)	Finer		Percentage	material for USDA Classification
		Gravel	50.67	
2	49.33	Sand	29.46	59.72
0.05	19.87	Silt	12.52	25.38
0.002	7.35	Clay	7.35	14.90

USDA Classification: LOAMY SAND

page 2 of 4

WASH SIEVE ANALYSIS

ASTM D6913-04 (2009)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	14.9
Project No.:	2016-527-001	Sample No.:	B-3-6
Lab ID:	2016-527-001-036	Soil Color:	Brown

Moisture Content of Passing 3/4" Ma	aterial	Water Content of Retained 3/4" Material	
Tare No ·	1477	Tare No :	NA
Wt of Tare & Wet Sample (a)	436 62	Weight of Tare & Wet Sample (g):	0.00
Wt of Tare & Dry Sample (g):	436 62	Weight of Tare & Dry Sample (g).	0.00
Weight of Tare (g):	144.08	Weight of Tare (g):	0.00
Weight of Water (g):	0.00	Weight of Water (g):	0.00
Weight of Dry Soil (g):	292.54	Weight of Dry Soil (g):	0.00
Moisture Content (%):	0.0	Moisture Content (%):	0.0
Wet Weight of -3/4" Sample (g):	0	Weight of the Dry Sample (g):	292.54
Dry Weight of - 3/4" Sample (g):	0.0	Weight of minus #200 Material (g):	63.57
Wet Weight of +3/4" Sample (g):	0.00	Weight of plus #200 Material (g):	228.97
Dry Weight of + 3/4" Sample (g):	0.00		
Total Dry Weight of Sample (g):	0.0	J - Factor (Percent Finer than 3/4"):	NA

Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	21.55		7.37	7.37	92.63	92.6
3/8"	9.5	20.22		6.91	14.28	85.72	85.7
#4	4.75	53.35		18.24	32.52	67.48	67.5
#10	2	53.11		18.15	50.67	49.33	49.3
#20	0.85	40.53	(**)	13.85	64.52	35.48	35.5
#40	0.425	19.24		6.58	71.10	28.90	28.9
#60	0.25	9.32		3.19	74.29	25.71	25.7
#100	0.15	5.92		2.02	76.31	23.69	23.7
#140	0.106	3.10		1.06	77.37	22.63	22.6
#200	0.075	2.63		0.90	78.27	21.73	21.7
Pan	-	63.57		21.73	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" sieve analysis is based on the Weight of the Dry Specimen

Tested By	SG	Date	11/17/16	Checked By	KC	Date	11/21/16

page 3 of 4 DCN: CT-S73J, Dynied Cossultantes 2006-527-001 ACP TXG0007\draft\2016-527-001-036 Grain SieveHyd J D6913 DONE.xls]Print Sheet 6913 & 7928-J

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

HYDROMETER ANALYSIS

ASTM D7928-16

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-3 (MP 9.3)
Client Reference:	ACP TXG0007	Depth (ft):	14.9
Project No.:	2016-527-001	Sample No.:	B-3-6
Lab ID:	2016-527-001-036	Soil Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (Co)	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm'
0	NA	NA	NA	NA	NA	NA	NA
1	26.5	22.3	5.97	12.3	0.0463	89.8	19.5
2	25.5	22.3	5.97	12.5	0.0330	85.5	18.6
4	24.5	22.3	5.97	12.6	0.0235	81.1	17.6
25	20.0	22.3	5.97	13.5	0.0097	61.4	13.3
30	19.5	22.3	5.97	13.5	0.0089	59.2	12.9
60	17.5	22.3	5.97	13.9	0.0064	50.5	11.0
240	15.5	22.4	5.93	14.3	0.0032	41.9	9.1
1440	12.0	22.7	5.82	14.9	0.0013	27.0	5.9

Soil Specimen Data

Tare No.:	301	Percent Finer than # 200:	21.73
Wt. of Tare & Dry Material (g):	133.26		
Weight of Tare (g):	105.66	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	22.60		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	G- 1159
Cylinder	G- 772
Thermometer	G- 1505
Balance	G- 1057
#200 Sieve	G- 1718
Foam Inhibitor Used	No

ТΟ

Tested By

Date 11/16/16

Checked By

KC

11/21/16

0

Date

0

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.:	Geosyntec C ACP TXG000 2016-527-00	: Consultants, Inc.)007 001			Boring No.: Depth (ft): Sample No.:	B-3 (MP 9.3 14.9 B-3-6	3)	
Lab ID:	2016-527-00	1-036		Soil Description: BROWN LEAN CLAY			EAN CLAY	
Note: The USCS symbol used with this test refers only to				the minus N	o. 40	(Minus No. 40) sieve material,	Air dried)
sieve material. See the	"Sieve and Hy	drometer	r Analysis" g	raph page fo	or the complete	material des	cription .	
As Receiv	ed Moisture	e Conte	ent		Liqui	id Limit Te	est	
AST	M D2216-10			1	2.	3	М	
Tare Number:			17	167	454	196	U	
Wt. of Tare & Wet Sar	nple (g):	52	2.06	28.76	25.85	29.79	L	
Wt. of Tare & Dry San	nple (g):	49	9.78	25.99	23.12	27.18	т	
Weight of Tare (g):		6	.97	18.06	14.86	17.71	I	
Weight of Water (g):		2	2.3	2.8	2.7	2.6	Р	
Weight of Dry Sample	(g):	4	2.8	7.9	8.3	9.5	0	
Was As Received MC	Preserved:	Y	′es				I	
Moisture Content (%):	5	5.3	34.9	33.1	27.6	Ν	
Number of Blows:	-			15	22	33	Т	
-								
Plastic Limit Test		1	2	Range		Test Res	ults	
Tare Number:		226	234			Liquid Lim	it (%):	31
Wt. of Tare & Wet Sar	mple (g):	25.60	25.90					
Wt. of Tare & Dry San	nple (g):	24.56	24.89			Plastic Lin	nit (%):	20
Weight of Tare (g):		19.35	19.89					
Weight of Water (g):		1.0	1.0			Plasticity I	ndex (%):	11
Weight of Dry Sample	(g):	5.2	5.0					
						USCS Sym	ibol:	CL
Moisture Content (%):	20.0	20.2	-0.2				
Note: The acceptable	range of the tw	vo Moist	ure contents	is ± 2.6				
	Flow Curve Plasticity Chart							
36				60		İ		

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

520 Pike Street, Suite 1375 Seattle, WA 98101 PH 206.496.1456 www.geosyntec.com

30 May 2017 TXG0007-012-6303

VIA EMAIL

Colin Olness, Contractor Atlantic Coast Pipeline 99 Edmiston Way Buckhannon, WV 26201

Subject: Geotechnical Investigation at Potential Slope Instability Site George Washington National Forest (GWNF) Atlantic Coast Pipeline (ACP) Project Route Revision 11B, Segment AP-1, MP 120.3 Augusta County, Virginia

Dear Mr. Olness:

This data summary report has been prepared by Geosyntec Consultants, Inc. (Geosyntec) for Dominion Transmission, Inc. (DTI) to present the geotechnical drilling investigation performed at a geohazard site located within the George Washington National Forest (GWNF) at Milepost (MP 120.3) along Segment AP-1 of the Atlantic Coast Pipeline (ACP) Route Revision 11B (Project; Figure 1). The objective of this geotechnical drilling investigation was to characterize the subsurface conditions at the site and confirm or preclude suspected slope instability identified as part of our Phase 2 investigation [Geosyntec, 2016a]¹, so that if required, measures may be designed to mitigate the effects of potential ground movement on the pipeline. This geotechnical investigation was performed in accordance with requirements of the United States Forest Service (USFS) Special Use Permit (authorization I.D. No. GWP433202T), dated 11 April 2016 and the completed work plan [Geosyntec, 2016b]². This report summarizes activities completed in the

¹ Geosyntec Consultants, 2016a. "Geohazard Analysis Program Phase 2 Report, Atlantic Coast Pipeline and Supply Header Project", submitted to Dominion Transmission, Inc., dated 29 July 2016.

² Geosyntec Consultants, 2016b. "Work Plan for Geotechnical Investigations at Potential Slope Instability Sites, George Washington National Forest (GWNF), Atlantic Coast Pipeline Project, Route Revision 11a Segment AP-1 MP 120.3 and MP 123.1, Highland County, Virginia", submitted to Dominion Transmission, Inc., dated 26 September 2016.

field, a description of the geologic conditions observed at the site, and provides the results of the geotechnical laboratory testing program.

GEOTECHNICAL INVESTIGATION

This geotechnical drilling investigation included a site reconnaissance, access road improvements, geotechnical borings, instrumentation installation and monitoring, and geotechnical laboratory testing.

Site Reconnaissance

Our field reconnaissance performed on 25 August 2016 consisted of a site visit by a Principal Engineering Geologist from Geosyntec, two representatives from Horn and Associates (drilling subcontractor), and two representatives from the ACP to evaluate existing site conditions and access to the identified geohazard site location. The objective of the field reconnaissance was to familiarize the drilling contractor with the site conditions, identify potential access routes, evaluate the number and type of exploratory borings needed to adequately characterize the site, and select locations for the exploratory borings in the field.

Health and Safety

Prior to conducting our field investigation, Geosyntec updated our existing site-specific Health and Safety Plan (HASP) in accordance with Occupational Safety & Health Administration (OSHA) requirements. The updated HASP addressed potential hazards at the two site locations, including requirements for worker protection based on the anticipated activities. Additionally, the HASP also included directions to nearest emergency medical facility. Prior to commencing work at the site, Geosyntec also delineated the locations of the individual explorations and notified Underground Service Alert (USA, Dig-Alert) to identify the locations of any existing underground utilities within the immediate vicinity.

Site Access and Improvements

Drilling locations at GWNF MP 120.3 were accessed using the existing USFS Buckhorn Creek service road and abandoned logging trails. Due to the remote locations of the investigation site, minor grading and road restoration activities were performed where no previous access existed. Road restoration and grading work was performed by Horn and Associates utilizing a John Deere 85D tracked excavator. Work consisted of trimming secondary vegetation growth, smoothing the ground surface, and localized widening and leveling where cross-slope conditions would not permit safe passage of a light weighted track mounted drill rig. Drilling locations and temporary access routes at GWNF MP 120.3 were selected to minimize grading and to minimize removal of timber greater than 4-inch diameter-breast-height (DBH), to the extent practical.

Where ground disturbance was required, erosion and sediment control Best Management Practices (BMPs) were implemented to minimize the potential for erosion and/or sediment transport to adjacent areas outside the limits of disturbance. BMPs consisted of 8-inch silt socks installed along the edge of the graded access roads and the drilling investigation pads. Upon completion of drilling activities, excess cuttings from the borings were thinly spread within the limits of disturbance and the ground surface was re-contoured to match that of pre-existing conditions to the extent feasible. Locally sourced straw and an approved seed mix specified by the USFS were hand broadcasted along the surface of graded areas to help reduce erosion and sediment transport and promote vegetative growth. Silt socks were slit and spread at the surface.

Following completion of drilling activities at MP 120.3, pre-existing water bars (berms) located along the abandoned logging trails were reinstalled to promote positive flow off the logging trails. Restoration activities included casting of approved seed mix and covered by straw. Restoration activities were also completed at the logging trail access point off of Buckhorn Creek Road where wet road conditions resulting in tire rutting. A photographic log documenting completed road improvement and site restoration activities is provided in Appendix A.

Subsurface Explorations

This geotechnical investigation included drilling two exploratory borings at the GWNF MP 120.3 geohazard site location along the east facing slope (designated Borings B-1 and B-2; Figure 1). Borings were drilled between 54.3 and 60.0 feet below ground surface (ft bgs). Table 1 presents the coordinates, ground surface elevations, and termination depths of Borings B-1 and B-2.

Boring ID	Coordinates – UTM, Zone 17S, NAI Proposed As-Bui			AD83 Suilt	Ground Surface Elev. WGS84	Final Depth
	Latitude	Longitude	Latitude	Longitude	(MSL- ft)	(ft)
B-1 (MP 120.3)	38.291879	-79.235864	38.29187	-79.23584	1,892	60.0
B-2 (MP 120.3)	38.291940	-79.235626	38.29196	-79.23562	1,884	54.3

 Table 1 – Coordinates of Boring Locations

The borings were advanced by Horn and Associates of Winchester, Kentucky utilizing a lightweight rubber track mounted Diedrich D-50 drill rig. Borings were drilled using a combination of 8-inch hollow-stem auger (HSA) and core drilling (NX) methods. During HSA drilling, drive samples were collected at approximately 30-inch intervals using a 2.5-inch diameter, 24-inch long Standard Penetration Test (SPT) sampler to facilitate lithologic logging and sample

collection for geotechnical laboratory testing. SPT sampling was performed through the entire overburden material profile and into underlying bedrock, to the extent practical.

Following auger or SPT refusal, or upon encountering competent formation (bedrock) material, the investigations switched to core drilling methods until the borehole was advanced at least 15 feet into intact bedrock. The core drilling process required circulation of water mixed with a naturally occurring bentonite based drilling fluid additive to regulate the temperature of the core bit, to carry cuttings to the surface, and to promote borehole stability. During the coring process, drilling fluid was pumped through the drill rods and past the bit before returning to the surface with cuttings through the annular space between the drill rods and the wall of the boring. At the surface, the fluid and cuttings were discharged into a baffled sump tank to allow the cuttings to fall out prior to recirculating the drilling fluid back down the borehole. Water required for this process was purchased from the City of Staunton, Virginia and hauled to the drilling sites and stored in 1,000 gallon tanks staged at the drilling locations.

The soil sample descriptions were logged by a Geosyntec Geologist in accordance with ASTM D2488. Additionally, recovered cores were logged to record structural orientation and discontinuities. Upon completion of logging, the cores were photographed (Appendix B) and retained in core boxes for subsequent sample selection and/or archiving. Table 2 summarizes the length of each boring, depth to top of bedrock, and the length of rock coring.

Boring ID	Boring Depth (ft)	Depth to top of Bedrock (ft)	Length of Rock Coring (ft)
B-1 (MP 120.3)	60.0	17.0	43.0
B-2 (MP 120.3)	54.3	19.0	35.3

 Table 2: Soil Thickness, Length of Rock Coring and Boring Penetration Depths

Geotechnical Instrumentation

Following completion of the core drilling and evaluation of the subsurface conditions, boreholes were selected for instrumentation consisting of either a standpipe piezometer to monitor groundwater levels or an inclinometer to record potential slope movement over time.

Piezometer

One temporary standpipe piezometer was installed in exploratory Boring B-2 at the GWNF MP 120.3 investigation site. The piezometer consisted of a 2-inch diameter PVC pipe, installed after drilling and prior to auger withdrawal, with a 10 ft section of 0.010-inch slotted screen (screened interval) placed at the overburden material and bedrock interface. The annular space around the screened interval was backfilled with a permeable filter pack generally consisting of coarse-

grained sand. A 2-foot bentonite seal was placed at the top of the filter pack, and the remainder of the annular space was backfilled with bentonite-cement grout to prevent conveyance of surface water into the ground. Standpipe piezometer construction logs for the piezometer installed at Boring B-2 are provided in Appendix C and summarized in Table 3a.

Depth to groundwater within the Boring B-2 temporary standpipe piezometer was measured at 27.50 ft bgs on 2 April 2017 approximately 24 hours after drilling. A subsequent groundwater level survey was performed on 20 April 2017 and depth to groundwater was recorded at 28.40 ft bgs. This subsequent measurement is considered to represent relatively stabilized levels, however, the subsurface materials at the site generally exhibits a relatively high percentage of silt and clay sized materials, which reduce permeability. It is possible that the observed groundwater levels in the temporary piezometers may not represent fully stabilized groundwater conditions due to the time rate of travel of groundwater through these materials. The measurements indicate that depth to groundwater increased approximately 0.90 ft between 2 April 2017 and 20 April 2017. A summary of the standpipe piezometer data is provided below in Table 3a and presented graphically in Figure 2.

Table 3a: Standpipe	Piezometer	Construction
---------------------	------------	--------------

Piezometer ID	Boring Depth (ft)	Depth to Top of Bedrock (ft)	Depth to Groundwater ¹ (ft bgs)	Depth to Top of Screen (ft)	Screen Length (ft)	Depth to Bentonite Seal (ft)
B-2 (MP 120.3)	54.3	19.0	28.40	19.7	10	15.1

Notes:

1 - Depth to groundwater measured on 20 April 2017.

The surface completion for the piezometer included a locked surface monument to provide access for periodic groundwater level measurements, as well as to be used as a benchmark for subsequent level surveys. The temporary standpipe piezometer is anticipated to be monitored through pipeline construction if deemed necessary. Upon completion of monitoring, the PVC piezometer should be cutoff below the ground surface and backfilled with bentonite-cement grout.

Inclinometer

One inclinometer was installed in exploratory Boring B-1 at the GWNF MP 120.3 geohazard site to monitor the absence or the presence of progressive slope movement that may be imperceptible to the eye. Inclinometer casing consisted of 2.75-inch diameter acrylonitrile butadiene styrene

(ABS) plastic. The bottom of the inclinometer casing was installed at 35.5 ft bgs due to borehole collapse after drilling activities were completed. The annular space between the wall of the boring and the inclinometer casing was backfilled with a lean cement grout mixture from the bottom up using a tremmie pipe. Construction logs for the inclinometer installed at GWNF MP 120.3 are provided in Appendix C and summarized in Table 3b.

Following instrumentation installation, an initial baseline survey (i.e., zero reading) was performed on 20 April 2017. The grouted-in inclinometer was allowed 21 days to set prior to conducting the baseline reading. A summary of the inclinometer survey data is described below in Table 3b and presented graphically in Figure 3.

Table 3b: Installation depth of inclinometer

Inclinometer ID	Boring Depth (ft)	Depth of Inclinometer Casing ¹ (ft)	Depth to Top of Bedrock (ft)	Length of Stickup above Ground Surface (ft)
B-1 (MP 120.3)	60.0	35.5	17.0	3.5

Notes:

1 – Borehole collapsed to 35.5 ft bgs prior to constructing inclinometer casing.

The surface completion for the inclinometer included a locked surface monument to provide access for periodic monitoring as well as to be used as a benchmark for subsequent level surveys. The inclinometer is expected to be monitored through construction if deemed necessary. Upon completion of monitoring, the inclinometer casing should be cut off below the ground surface and backfilled with bentonite-cement grout.

SITE CONDITIONS

Knowledge of the site conditions was developed from a review of regional geologic conditions and our findings from explorations performed for this investigation.

Geologic Setting

The GWNF MP 120.3 investigation site lies within the central Valley and Ridge physiographic province of northwestern Virginia. The Valley and Ridge province is characterized by linear, northeast-southwest trending ridges and valleys resulting from differential erosion of Paleozoic continental shelf and platform strata that has been deformed into a series of elongate macroscale folds and imbricate southeast-dipping thrust faults. Deformation disrupts strata as young as Late Carboniferous, and is the product of the Carboniferous-Permian Alleghanian orogeny, which was

the result of the collision between Africa and North America during the formation of the supercontinent Pangea.

Surface Conditions

The GWNF MP 120.3 investigation site is located approximately 0.6 miles north of Hanky Mountain Highway (Highway 250) and was accessed along the USFS Buckhorn Creek service road and abandoned logging trails along the proposed AP-1 Segment, where the alignment extends up an east-facing slope. The surface morphology along the proposed alignment is characterized by moderately sloping terrain (30% to 40% inclination) across a natural bench with minor tree growth distortion. The natural hillsides along the proposed alignment are covered by moderate growth of low lying grasses, shrubs, and deciduous woodlands. Additionally, several below ground utility lines were identified along Hanky Mountain Highway (Highway 250), but do not traverse the geotechnical investigation site area.

The elevation at Boring B-2 is approximately 1,884 above feet above mean sea level (ft msl), sloping upwards towards the southwest along the proposed pipeline alignment. The elevation at Boring B-1 is approximately 1,892 ft msl, also sloping upwards towards the southwest along the proposed pipeline alignment. The latitude and longitude of the GWNF MP 120.3 borings were acquired during the drilling investigation using a hand-held global positioning (GPS) device. Boring elevations were obtained by plotting those coordinates on a topographical map for the area.

Subsurface Conditions

The subsurface conditions at GWNF MP 120.3 consist of colluvial and talus deposits (fining upwards) generally comprised of light yellowish brown to reddish brown lean clay with silt and sand and sporadic sandstone gravels, cobbles, and boulders overlying bedrock of the Devonian-age Chemung Formation. Thickness of the colluvial/talus deposits observed in the borings at the GWNF MP 120.3 site ranged from 17.0 ft (Boring B-1) and 19.0 ft (Boring B-2).

Bedrock of the Devonian-age Chemung Formation observed in each of the two borings at GWNF MP 120.3 consist of olive brown to dark gray interbedded shale and sandstone. Recovered rock cores were generally massively bedded and highly fractured (50° to 70° fracture angles). Recovered cores were also variably weathered consisting of iron oxidation infilling along the fracture planes. A generalized geologic cross section along the slope profile is presented in Figure 1. Due to the high angle bedding at this location and localized fracture frequency, several sections of the recovered cores exhibited abnormally high fracture intensity as a result of the coring process and the rock quality designation (RQD) could not be accurately determined. Where the RQD could be determined in less fractured material, the RQD was generally very poor

to fair ranging from 38% to 55% (B-1) and 33% to 71% (B-2). Detailed logs of the two borings advanced at the GWNF MP 120.3 site, as well as a key sheet, are presented in Appendix D.

On 1 December 2016, Draper Aden Associates (Draper) conducted a seismic refraction study³ at the GWNF MP 120.3 investigation site (Appendix E). The objective of the survey was to determine depth to bedrock at soil test pits excavated during the completion of an Order 1 Soil Survey where bedrock was not encountered within the protocol depth of 50-inches below ground surface. Data from the seismic refraction profile conducted at the GWNF MP 120.3 investigation site (test pit ID GWNF-P279B-161201) suggest depth to weathered bedrock and bedrock is at 7.3 ft bgs and 9.0 ft bgs, respectively. The shallower depths to weathered bedrock and bedrock suggested by the seismic refraction study likely represent the talus material shed from the adjacent ridge and is generally consistent with the conditions encountered during this geotechnical drilling investigation. The approximate location of the three seismic refraction surveys performed near the GWNF MP 120.3 investigation site is presented on Figure 1.

Subsurface conditions observed in the borings at the GWNF MP 120.3 geohazard site did not substantiate that the surface morphology features initially identified in the Phase 2 reconnaissance (i.e., scarp and bench morphology, moderately steep sloping terrain, and minor tree growth distortion) were a result of previous slope failure or slope instability. The lack of subsurface evidence to support slope instability based on explorations performed suggest that the site morphology is likely a result of a relict fluvial cut terrace given the proximity of the existing creek downslope from the site and is further substantiated by the presence of basal gravels, cobbles and boulder talus material documented along the erosional contact with the underlying formational material. Additionally, no evidence of recent active failure such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation.

LABORATORY TESTING

Geotechnical Laboratory Testing Program

Geosyntec contracted Geotechnics, Inc. (Geotechnics) of East Pittsburgh, Pennsylvania to conduct laboratory testing assigned by Geosyntec on selected soil samples and rock cores to evaluate the pertinent geotechnical index properties. The laboratory testing program, on soil samples, was primarily focused on soil classification and index testing. Testing on select rock cores focused on compressive strength. The laboratory testing program consisted of:

³ Draper Arden Associates, 2017. "Atlantic Coast Pipeline – Seismic Refraction Study, George Washington National Forest and Monongahela Nation Forest, Virginia and West Virginia", submitted to Geosyntec Consultants dated 10 March 2017.

Soil Samples

- Water content tests per ASTM D2216;
- Atterberg limit tests per ASTM D4318;
- Sieve analysis tests per ASTM D422; and
- Hydrometer tests per ASTM D422.

Rock Cores

• Unconfined compressive strength test per ASTM D7012-Method C.

Table 4 summarizes the number and types of laboratory testing conducted on soil and rock samples from the GWNF MP 120.3 geohazard site.

	Number of Tests					
Types of Laboratory Tests	B-1 (MP 120.3)	B-2 (MP 120.3)				
Water Content	8	5				
Atterberg Limits	4	3				
Sieve Analysis	4	3				
Hydrometer Test	0	0				
Rock Unconfined Compressive Strength	3	1				

Table 4: Number and Types of Laboratory Tests

Laboratory Test Results

The laboratory test results are also plotted in the corresponding boring logs (Appendix D), and the individual test results presented in detail in Appendix E.

Soil Testing

Given the granular nature of the soils from GWNF MP 120.3, select samples were tested for grain-size distribution to quantify percentages of gravels, sands and fines. The results show that the soils generally consist of lean clay (CL) with silt, sand, and gravel and coarsen with depth consisting of clayey sand (SC) with silt and gravel, and silty sand (SM) with gravel.

The laboratory soil testing performed for the GWNF MP 120.3 borings included water content and Atterberg limits measured on selected lean clay and silt samples and grain–size analysis to quantify the percentages of gravel, sand and fines, particularly on samples containing coarser

grained material. Table 5 presents a summary of the laboratory test results conducted on soil samples.

Boring ID	Sample ID	Depth	Water Content	Percent of Gravel (1) (%)	Percent of Fines (2)	Liquid Limit	Plastic Limit	Plasticity Index
B-1	B-1-1	0.9	20.1	-	-	_	_	_
B-1	B-1-2	4.0	16.5	11.7	71.7	31	18	13
B-1	B-1-3	6.5	18.1	-	-	-	-	-
B-1	B-1-4	9.0	14.6	9.4	62.8	31	18	13
B-1	B-1-5	11.3	14.6	-	-	-	-	-
B-1	B-1-6	13.4	15.5	-	-	-	-	-
B-1	B-1-7	16.5	16.1	2.8	63.4	35	20	15
B-1	B-1-8	18.7	12.6	22.0	37.2	29	19	10
B-2	B-2-1	1.2	21.9	-	-	-	-	-
B-2	B-2-2	3.5	19.2	6.9	73.6	42	21	21
B-2	B-2-3	5.8	9.6	19.5	30.6	0	0	0
B-2	B-2-4	18.0	23.0	5.7	25.4	24	19	5
B-2	B-2-6	23.2	11.9	-	-	-	-	-

Table 5: Summary of Laboratory Test Results on Soil Samples

Notes:

1 - Retained #4 sieve.

2 - Passing #200 sieve.

"-" Not analyzed

Rock Core Testing

A summary of laboratory test results conducted on rock samples is presented in Table 6.

Boring ID	Core ID	Sample Interval (ft)	Unit Weight (pcf)	Uniaxial Compres. Strength (psi)
B-1	R-5	46.2-47.1	163.7	2,470
B-1	R-6	51.8-52.3	164.5	3,920
B-1	R-7	55.2-55.8	151.1	13,470
B-2	R-5	33.3-33.6	160.4	3,610

Table 6: Summary of Laboratory Test Results on Rock Samples

Summary of Laboratory Testing

The geotechnical laboratory test results indicate that water content of colluvial/talus deposits varied between 12.6% and 20.1% (Boring B-1) and 9.6% and 23.0% (Boring B-2), and showed a decreasing trend with depth. The Atterberg test results show that the colluvial/talus deposits contain a plasticity index (PI) of 0 (non-plastic) to 21 and the soil unit is mainly within the low plasticity clay zone (i.e., CL). The PI generally decreases with depth within the low plasticity clay soil unit.

The unconfined compressive strength of the recovered rock cores varied between 2,470 psi (Core R-5 of Boring B-1) and 13,470 psi (Core R-7 of Boring B-1).

SUMMARY OF FINDINGS

Subsurface conditions recorded during the geotechnical drilling investigation at the GWNF AP-1 MP 120.3 geohazard site suggest previous shallow seated slope movement did not occur along the proposed ACP alignment. The suspect site morphology initially identified as a landslide, is likely a result of a relict fluvial cut terrace, given the proximity of the existing creek downslope from the site. This interpretation is further substantiated by the presence of basal gravels, cobbles and boulder talus material along the erosional contact with the underlying formational material as documented in the subsurface explorations.

As a consequence of these findings, the BIC typical scenario for this site was reclassified from B2(E) to A2(E), a change which allowed the removal of some BIC incremental controls for geohazard mitigation, which were no longer consider necessary.

Although no evidence of recent or active slope movement, such as ground cracks, recent scarps, or exposed earth, was observed at the time of our investigation, data collected during subsequent inclinometer monitoring events will be used to validate the current interpretation and inform site-

specific engineering evaluations. An addendum to this data summary report will be issued as subsequent monitoring data is collected.

CLOSING

Geosyntec appreciates the opportunity to provide Dominion Transmission, Inc. with this data summary report, and we look forward to working together on this important project. If you have questions information, or require additional please contact Logan any Brant (lbrant@geosyntec.com, 281.810.5056) Jared Warner (jwarner@geosyntec.com, or 858.716.2885).

Sincerely,

Geosyntec Consultants,

Logan Brant, Ph.D., P.E. (VA) Senior Geotechnical Engineer

Jared Warner, P.G. Project Geologist

Attachments:

Figures

- Figure 1 Site Plan and Generalized Geologic Profile
- Figure 2 Piezometer Survey Data
- Figure 3 Inclinometer Survey Data

Appendices

Appendix A – Photographic Log

Appendix B - Core Photographs

Appendix C – Piezometer and Inclinometer Construction Logs

Appendix D – Logs of Borings B-1 and B-2

Appendix E - Laboratory Test Results

FIGURES

Notes: Precipitation data obtained from weather station located in Staunton, Virginia. Reference: www.wunderground.com

Piezometer Survey Data (Boring B-2)

Project: ACP GWNF MP 120.3 Location: Augusta County, Virginia Project Number: TXG0007-012-6303 Client: Dominion Transmission, Inc.

Inclinometer Survey Data (Boring B-1)

Project: ACP GWNF MP 120.3 Location: Augusta County, Virginia Project Number: TXG0007-012-6303 Client: Dominion Transmission, Inc.

APPENDIX A PHOTOGRAPHIC LOG

APPENDIX A - PHOTOGRAPHIC LOG ACP Geotechnical Investigation GWNF MP 120.3 Drilling Site 30 March through 4 April 2017

TXG0007-012-6303

PHOTOGRAPHIC LOG - GWNF Drilling Site MP 120.3 ACP Geotechnical Investigation 30 March through 4 April 2017

TXG0007-012-6303
PHOTOGRAPHIC LOG - GWNF Drilling Site MP 120.3 ACP Geotechnical Investigation 30 March through 4 April 2017

TXG0007-012-6303

TXG0007-012-6303

PHOTOGRAPHIC LOG - GWNF Drilling Site MP 120.3 ACP Geotechnical Investigation 30 March through 4 April 2017

Geosyntec[▶]

consultants

APPENDIX B CORE PHOTOGRAPHS

Geosyntec▷

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP GWNF MP 120.3 CLIENT: DOMINION TRANSMISSION, INC. PROJECT NO.: TXG0007-012-6303 LOCATION: AUGUSTA COUNTY, VIRGINIA

GWNF MP 120.3 Boring B-1: Box 1 of 2 (25.0 to 55.0 ft bgs)

GWNF MP 120.3 Boring B-1: Box 2 of 2 (55.0 to 60.0 ft bgs)

Geosyntec▷

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP GWNF MP 120.3PROJECTCLIENT: DOMINION TRANSMISSION, INC.LOCATIO

PROJECT NO.: TXG0007-012-6303 LOCATION: AUGUSTA COUNTY, VIRGINIA

GWNF MP 120.3 Boring B-2: Box 1 of 2 (5.5 to 16.5 ft bgs and 24.7 to 44.7 ft bgs)

GWNF MP 120.3 Boring B-2: Box 2 of 2 (44.7 to 54.3 ft bgs)

APPENDIX C

PIEZOMETER AND INCLINOMETER CONSTRUCTION LOGS

Geosyntec Consultants

Appendix C - Piezometer Construction Log

Site: Atlantic Coast Pipeline	Date: 1-Apr-17
Well ID: B-2 (MP 120.3)	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 54.3
Drillers: Tim Jenkins	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Well Depth: 54.3'
	Well Diameter: 2"
Top of	Well Construction:
Casing 3.2'	Material: SCH 80 PVC
	Inside Diamter: 2"
Ground Elev. 0	Screen Slot Size: 0.01"
	Screen Beg.: 19.7' End: 29.7'
	Sump Y / N
	Type/Length: PVC End Cap (0.3")
15.1'	Filter Pack:
	Type/Brand: Global Drilling #5 Quartz Sand
	Amount Used: 6.5 50lb bags
	Placement Method: Tremie
Top of Seal 15 1'	Seal:
	Type/Brand: Pure Gold Gel Bentonite
Seal Bottom	Amount Used: 1/2 50lb bag
	Vol. Fluid Added: NA
Top of Sand Above	Set-up Time: Overnight
Screen	Placement Method: Poured
	Grout:
	Type/Brand: Gel Bentonite
Screen	2 94lb bag of Portland + 50lb bag
Length	Amount Used: bentonite
10	Vol. Fluid Added: ~ 60 gallons H ₂ O
Filter Pack	Placement Method: Tremie
Length	Well Completion:
37.1	Above Grade / Below Grade
Screen	Guard Posts? Y / N
Bottom 29.7 Riser Length	Pad Size: N/A
	Cover Type/Size: Protective Cover (4.5")
Well Depth 54.3	Comments:
Well Diam.	
$\underbrace{\bullet}_{\text{gr}/2} \text{ IG}$	ogist Signature: Jared Warner
Borehole Diam.	

Geosyntec Consultants

Inclinometer Construction Log

APPENDIX D

LOG OF BORINGS B-1 AND B-2

Geosyntec[▷]

consultants

engineers | scientists | innovators

PROJECT ACP GWNF MP 120.3 GEOTECHNICAL INVESTIGATION **PROJECT LOCATION** AUGUSTA COUNTY, VIRGINIA

PROJECT NUMBER

TXG0007-012-6303

:Y-GEOTECH - GEOSNTEC.GDT - 4/5/16 13:47 - P.\GINT\PROJECTS\BLUE RIDGE GEOTECHNICAL DRILLING\ACPHDD

GPJ

	Ge	eosy cons	ntec ¹ ultants 11490 We Houston T Tel: (281)	esthein exas 920-4	ner Roa 77077 1601	ad			BOR PRO NUN LOC STA	ING JEC IBE ATI RT I	T R ON DRII	MP 120.3 B-1 Atlantic Coast Pipeline TXG0007 Augusta County, VA LL DATE 4/2/2017	GR TO DA	OUN P OF TUN	ND S F CA	SURI	SHE F. 18 IG ve M	EET - 892. ⁻ ISL	1 OI 1	F 3	
	GS S(S FORM: DIL-5910	APPENDIX D -	BOR	RING I	_0	G	<u>][</u>	FINI	SHI	DRII	LL DATE 4/2/2017									
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Name 2) Color 3) Moisture 4) Grain Size 5) Percentage	USCS) 6) Plasticity 7) Density/Consistency 8) Other (Mineral Content, Discoloration, etc.)	GRAPHIC LOG	SAMPLE NO.	TYPE	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pcf)	MOIST UNIT WEIGHT (pd)	PERCENT FINES (%)	DERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			
- 2-	- 1890_	COLLUVIUM light to dark presence of gravel, and p	: LEAN CLAY WITH SAND (CL), yellowish brown, moist, soft, trace coarse sand, fine sandstone plant debris.		B-1-1	Z	1 2 2	4	50	0.75 to 1.2								20.1			
-4-	-	Becomes mo reddish brov gravel.	ttled light yellowish brown and dark vn, hard, increase in fine sandstone		B-1-2	Z	6 9 12	21	100	3.2 to >4.5					71.6	1		16.5	31	18	13
- 6- -	_ _ 1885_	Becomes mo yellowish bro weathered s	ttled reddish brown and tan to light own, dry to moist, increase in fine andstone gravel.		B-1-3	Z	5 8 13	21	100	3.0 to 4.0								18.1			
8-	-	Becomes san sandstone g	ndy lean clay with trace coarse ravel (up to 1.5 inches).		B-1-4	Z	8 11 14	25	100						62.7	,		14.6	31	18	13
10- - 12-	_ - 1880_	Becomes fine sandstone g	e with slight increase in coarse ravel (up to 1.5 inches).		B-1-5	\mathbb{Z}	10 9 9	18	89	2.3 to 2.5								14.6			
- 14 -	-	Becomes red sands and d sandstone g	dish brown, slight increase in fine lecrease in coarse weathered ıravel.		B-1-6	\mathbb{Z}	5 9 9	18	61	2.5 to 2.7								15.5			
- 16-	-	Same as abo	ve with trace rootlets.		B-1-7		6 7 10	17	100	2.6 to 3.0					63.4	Ļ		16.1	35	20	15
-18	-	reddish brov with fine sar reddish brov	VD WITH GRAVEL (SC), dark vn, dry to moist, dense, fine sand, ndstone gravel. Becomes brown to vn weathered sandstone at 18 ft bgs.		B-1-8		9 9 22	31	78			Possible weathered bedrock at 17.0 ft bgs.			37.2	2		12.6	29	19	10
20-		CHEMUNG F light brown hard, crumb	ORMATION: WEATHERED SHALE, n, highly weathered, highly fractured, bles, FeOx staining, possible boulder.		B-1-9		50/1	50	0			Sampler refusal at 20 ft bgs. Switch to rock coring.									
22- - 24- -	-				B-1-10		29 50/2	50	100			Driller indicates softer material at 22.5 ft bgs. Switch to hollow stem auger.									
26- - 28- -	- 1865_ -	Refer to MP 1	20.3 B-1 Page 2.																		
	CONTRACTOR Horn & Associates LATITUDE: 38.29187 QUIPMENT Diedrich D-50 LONGITUDE: -79.23584 RILL MTHD. Hollow Stem Auger COORDINATE SYSTEM: NAMETER 8 inches OGGER Jared Warner REVIEWER Jared Warner																				

ő

G	eos	vnt	tec®	11100	\\\\-)			BO PR(RIN(G CT	M At	I P lanti	120.3 B-1 c Coast Pipeline			S	HEE	T 2 (OF 3	
	coi	nsult	ants	Housto Tel: (2	vvestneimer F n Texas 7707 81) 920-4601	road 7			NU LO ST	MBI CAT ART	er Tion Dr	t) N A Rill	XG0 ugu: . DA	007 sta County, VA \ TE 4/2/2017	GRO TOP DATI	UND OF C JM F	SUR ASIN t abc	F. 1 IG ive M	892. SL	1	
	S FORM: DCK-5910		APPI		- BORING	G LC	G		FIN	ISH	DR	ILL	DA	TE 4/2/2017							
DEPTH (ft-bgs) ELEVATION (ft)	1) Fc 2) Rc 3) Cc 4) Gr 5) Be	ormation, N ock Name olor rain Size/F edding	DESCF Member Percentage	RIPTION 6) Weatherin 7) Hardness 8) Cementat 9) Moisture 10) Other (M Discolor	ng ion ineralization, ation, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUNNUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE		MINERAL TYPE	PLANARITY PLANARITY	DIP (degrees)
- 1891 - 1890 - 1889 - 1888 5 - 1887 - 1886 - 1885 - 1884 - 1883 10 - 1882 - 1883 10 - 1882 - 1883 10 - 1882 - 1883 10 - 1882 - 1877 - 1876 - 1877 - 1876 - 1877 - 1877 - 1877 - 1877 - 1877 - 1876 - 1877 - 1876 - 1877 - 1876 - 1875 - 1874 - 1873 20 - 1872 - 1876 - 1866 - 1865 - 1864 - 1863 30 - 1862	CHEMUN highly wea possible b Becomes degrees), No recove	20.3 B-1 p G FORMA athered, hi oulder or moderate FeOx alor ay from 26	ATION: WEAT ighly fractured talus materia ly weathered ng fractured p 5.5 to 30 ft bg	THERED SHALL d, hard, crumble l. and highly fract lanes. s.	, light brown, s, FeOx staining, ured (40 to 50			R-1	5	1.5	30		7	Driller indicates soft materia at 22.5 ft bgs. Switch back to hollow stem auger. Auger refusal at 25 ft bgs. Switch to rock coring.							
CONTE EQUIP DRILL DIAME LOGGI	RACTOR MENT MTHD. TER ER	187 3584 EM:		NO ⁻	TES KEY	: SHF	ET F	FOR S	SYMBOLS AND ABBREVIATI	ONS											

	Ge	eosyn consu	Itec [©] ltants	11490 Westheimer Houston Texas 77(⁻ Road)77			BOI PRO NUI LOO	RIN(DJE MBE CAT	G CT ER	M Atl T>	l P anti (G0	120.3 B-1 c Coast Pipeline 007 sta County, VA	GRO TOP	UND OF C	SUR ASIN	HEE F. 1	T 3 (892.	DF 3	•
	GS RO	FORM : CK-5910	APPE	NDIX D - BORIN		DG	– ار	ST/ FIN	ART ISH	DR DR		DA DA	TE 4/2/2017 TE 4/2/2017	DATI	JM F	t abc	ove N	ISL		
DEPTH (ft-bgs)	ELEVATION (ft)	1) Formatic 2) Rock Na 3) Color 4) Grain Siz 5) Bedding	DESCRI on, Member me ze/Percentage	PTION 6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY PLANARITY	DIP (degrees)
- - 35 -	1861 _ 1860 _ 1859 _ 1858 _ 1857 _ 1856 _ 1855 _	Same as above SANDSTONE, g moderate to stro No recovery from No recovery from	with high angle fra gray, moderately w ng, high angle frac n 33.1 to 35 ft bgs. n 35 to 40 ft bgs.	cture sets (50 degrees). reathered, highly fractuerd, tures (50 to 60 degrees).			R-2	5	3.1	62		11	Lost water at 36.0 ft bgs.							
- - 40- - -	1854 _ 1853 _ 1852_ 1851 _ 1850 _ 1849 _	SHALE, olive br vertical bedding to 70 degrees), f			R-4	5	2.6	52		13										
- 45 - -	to 70 degrees), FeOx infilled fractures (0.1 to 0.2 inch thick). 1850 - 1850 - 1849 - 1849 - 1848 - 1847 - 1846																			
- 50 –	1843 _ 1842_ 1841 _	No recovery. Becomes olive b weathered.	prown to brown, hig	ghly fractured, moderately			R-6	5	2.8	56		17								
-1840 - Becomes dark gray. -1839 - High angle fractures (50 to 60 degrees). -1838 - - 55 - 1837 - - R-7 5 2.9 58 17																				
-	1836 _ 1835 _ 1834 _ 1833 _	High angle fractu	ures (70 to 80 deg rown at 60 ft bgs.	rees) with FeOx infilling.									Termination depth at 60 ft bgs. Borehole collapsed at 35.5 ft bgs prior to setting inclinometer casing.							
	DNTRA QUIPM RILL M AMET DGGE	ACTOR Horr IENT Diec /ITHD. Rock TER NX R Jare	n & Associates Irich D-50 k Coring d Warner	LATITUDE: LONGITUDE COORDINA REVIEWER Jared Wa	38.29 E: -79.2 TE SYS rner			NO	KEY	SHE	ETF	ORS	SYMBOLS AND ABBREVIATI	DNS	<u> </u>	<u> </u>				'

	G	EOSYT consu	Itec 11490 We Itants Houston T Tat: (281)	esthein	ner Roa 77077	ad			BOR PRO NUN	ING JEC IBE ATI	T R ON	MP 120.3 B-2 Atlantic Coast Pipeline TXG0007 Augusta County, VA	G	ROI OP () SU CAS	SHE RF. ING	EET 188	1 O I 4.3	F 3	
	G	S FORM: OIL-5910	APPENDIX D -	BOR	RING	_0	G	ׅ׀ֺֺֺֺֺ֕֕֕֕֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬	STA FINI	RT SH I	DRII DRII	LL DATE 4/1/2017 LL DATE 4/1/2017	D	ΑΤι	JM	Ft al	oove	MSL	-		
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Name (U 2) Color 3) Moisture 4) Grain Size 5) Percentage	DESCRIPTION SCS) 6) Plasticity 7) Density/Consistency 8) Other (Mineral Content, Discoloration, etc.)	GRAPHIC LOG	SAMPLE NO.	түре	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pcf)	MOIST UNIT WEIGHT (pd)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			
2-		COLLUVIUM: L brown to light y intervals, mois sand, sandstor	EAN CLAY WITH SAND (CL), yellowish brown with reddish brown t, very soft, presence trace coarse re gravel, and plant debris.		B-2-1 B-2-2	Z 7	1 2 4 4 6 7	6 13	78 100	0.3 to 0.5 3.5 to 4.0					73.6			21.9 19.2	42	21	21
4- - - 6-	1880_	light yellowish ft bgs. SILTY SAND W brown with res weathered san very hard, non-	ITH GRAVEL (SM), reddish istant yellowish brown to tan dstone intervals, moist, fine sand, plastic.		B-2-3		15 24 45	69	89			Auger refusal at 5.5 ft bgs. Switch to rock coring.			30.6			9.6	0	0	0
8- - 10- - 12-		Refer to MP 120).3 B-2 page 2.																		
- 14- - 16- - -	1870_	SILTY, CLAYEY to yellowish br	/ SAND (SC-SM), reddish brown own, wet (due to rock coring),		B-2-4	7	2 4	15	100			Switch back to hollow stem auger at 16.5 ft bgs due to			25.4			23	24	19	5
18- - 20-	- 1865		, coarse sano, trace coarse graver.		B-2-5		50	50	100			Hard drilling. Possible weathered bedrock at 19.0 ft bgs.									
22-		Same as above to 1 inch).	trace coarse sandstone gravel (up		B-2-6	Z	33 36 50	86	100									11.9			
26-	+ 	Refer to MP 120	0.3 B-2 page 2.	<u></u>	B-2-7		50/2	50	0			Sampler refeusal at 24.5 ft bgs. Switch to rock coring.									
28 - - - -	.1855_																				
	ontf Quipi Rill Ame Dgge	ITRACTOR Horn & Associates LATITUDE: 38.29196 IPMENT Diedrich D-50 LONGITUDE: -79.23562 L MTHD. Hollow Stem Auger COORDINATE SYSTEM: METER 8 inches iGER Jared Warner REVIEWER Jared Warner REVIEWER Jared Warner																			

	(<u> </u>	a Net		ter [©]	>					BO	RIN D.IF	G CT	M	P anti	120.3 B-2			s	HEE	T 2 (OF 3	
	C	JU	COI	nsul	tants	11490 Housto Tel: (2	Westheimer F n Texas 7707 81) 920-4601	Road 7			NU		ER 101	T) T) N Au	KG0 Lgu:	0007 sta County, VA	GRO TOP	UND OF C	SUR ASIN	F. 1 IG	884.:	3	
		GS RO	FORM : CK-5910		APP		- BORING	G LC	G	<u> </u>	ST/ FIN	ART ISH	DR	RILL	DA DA	TE 4/1/2017 TE 4/1/2017	DATI	JM F	t abc	ve M	SL		
F					DESCI							SAN	PLE					DIS	CONT	INUI	TY DA	TA	<u> </u>
DEPTH (ft-has)		ELEVATION (ft)	1) Fc 2) Rc 3) Cc 4) Gi 5) Be	ormation, ock Name olor ain Size/ edding	Member e /Percentage	6) Weatherin 7) Hardness 8) Cemental 9) Moisture 10) Other (M Discolor	ng ion lineralization, ation, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
Γ	_1	883 _	Refer to N	1P 120.3	B-2 page 1.																		
	_1	882 _																					
	_1	881 _																					
	_1	880 _																					
5	1	879_																					
	- -1	878 _	No recove	ry, possi	ble boulder or	r talus material.		<u> </u>		R-1	5	1.1	22		8								
	_1	877 _																					
	_1	876 _																					
	_1	875 _																					
10	_1	874_	CHEMUN reddish br	G FORM own to b	ATION: WEA lack, highly w	THERED SAND	STONE, dark fractured, strong,																
	_1	873 _	FeOx stai	ning, pos	sible boulder	or talus material				R-2	5	2	40		10								
	_1	872 _	Same as	above.																			
	_1	871 _														Driller indicates coring							
	_1	870 _	Becomes	dark gre	enish gray.											boulder or talus material.							
15	_1	869_	No recove	n/						R-3	1	0.1	10		3								
		868 _	Refer to M	19. 				<u> </u>		14-5	'	0.1	10		J	Driller indicates softer							
		866			5 2 page											material at 16.5 ft bgs. Switch to hollow stem auger							
		865																					
20		864_																					
	_1	863 _																					
	_1	862 _									1												
	_1	861 _									1												
	_1	860 _																					
25		859_	CHEMUN	G FORM d, highly t	ATION: SHAL	LE, olive brown	slightly (50 to 60			R-4	5	3.5	70		11	Sampler refusal. Switch to rock coring at 24.5 ft bas.							
	_1	858 _	degrees),	moderat	e to strong, Fe	eOx along fractu	e planes.				1												
	_1	857 _																					
	_1	856 _	No recove	ry.							1												
	_1	855 _	Becomes fracture pl	olive bro anes, sli	wn, highly frac ghtly fractured	ctured with FeO: d, moderate to st	k staining along rong.				1												
30	_h :0	854	ACTOR	Horn &	& Associate	es		38.29	196	R-5 	5 NO	3.2	64		11								
				Diedri	ch D-50 Coring			-79.23	3562														
		MET	ER	NX				. 5131	LIVI.														
lĿ	.0	GGE	R	Jared	R Jared Warn			SEE	KEY	SHE	EETF	OR	SYMBOLS AND ABBREVIATIO	ONS									

			antoc	2				BO		G	Μ	P	120.3 B-2			S	SHEE	T 3 (OF 3	•]
		COS	nsultants	11490 Westheime Houston Texas 77	r Road 077			NUI	MBI CAT	ER ION	Au TX Au	XG0	c Coast Pipeline 1007 sta County. VA	GRO TOP	UND OF C	SUR ASIN	F. 1	884.:	3	
	GS	S FORM:		PENDIX D - BORII		G	\exists	ST# FIN	ART ISH	DR DR	RILL	DA DA	TE 4/1/2017 TE 4/1/2017	DATI	JM F	t abc	ove N	ISL		
\vdash									SAM	IPLE					DIS	CONI		ry d <i>i</i>	TA	
DEPTH (ft-bgs)	ELEVATION (ft)	1) Fo 2) Ro 3) Co 4) Gr 5) Be	DESC ormation, Member ock Name olor rain Size/Percentage edding	6) Weathering 7) Hardness 8) Cementation 9) Moisture 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ	FRACTURE DENSITY	APERTURE	FRACTURE FILLING	MINERAL TYPE	PLANARITY	DIP (degrees)
	_1853 _	Same as a	above.																	
	_1852 _	-																		
	_1851 _ _1850 _	No recove	ery.																	
35.	_1849	Same as a	above.				R-6	5	2.6	52		9								
	_1848 _	-																		
	_1847 _		NP (
	_1846 _ _1845 _		sıy.																	
40-	_1844	Same as a	above.			R-7	5	3.2	64		9									
	_1843 _	-																		
	_1842 _																			
	_1841 _ _1840 _		лу.																	
45 ·	_1839	Same as a	above.			R-8	5	5	100		11									
	_1838 _	-																		
	_1837 _	Becomes	dark gray, moderatel																	
	_1835 _																			
50	_1834_	-					R-9	4.3	4.2	98		9								
	_1833 _	-																		
	_1832 _	-																		
	_1830 _																			
55	_ 1829	-				1							Termination depth at 54.3 ft bgs.							
	_1828 _	-																		
	_1827 _	1																		
	_1825 _																			
60	1824	,																		<u> </u>
C E D	ontr Quipn Rill I	ACTOR MENT MTHD.	Horn & Associat Diedrich D-50 Rock Coring	tes LATITUDE: LONGITUD COORDINA	38.29 E: -79.23 TE SYST	196 3562 Г ЕМ:		NO	res	:										
	IAME1 OGGE	ter Fr	NX Jared Warner	REVIEWER Jared Wa	arner			SEE	KEY	SHE	ETF	OR	SYMBOLS AND ABBREVIATIO	NS						

APPENDIX E

LABORATORY TEST RESULTS

May 17, 2017

Project No. 2017-241-001

Logan Brant Geosyntec Consultants, Inc. 11490 Westheimer Rd., Suite 150 Houston, TX 77077

<u>Transmittal</u> Laboratory Test Results ACP TXG0007

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted, *Geotechnics, Inc*.

David R. Backstrom Laboratory Director

We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

Summary Table for ACP TXG0007

LAB ID	Boring	Depth	Sample Number	Water Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	USCS Symbol (Limits)	Passing #200%	Passing 0.002 mm %	USCS Symbol (Grain Size)	USCS Classification	UC Rock Peak Strength (psi)
2017-241-001-001	B-1 (MP120.3)	0.9	B-1-1	20.1	-	-	-	-	-	-	-	-	-
2017-241-001-002	B-1 (MP120.3)	4	B-1-2	16.5	31	18	13	CL	71.67	-	CL	LEAN CLAY WITH SAND	-
2017-241-001-003	B-1 (MP120.3)	6.5	B-1-3	18.1	-	-	-	-	-	-	-	-	-
2017-241-001-004	B-1 (MP120.3)	9	B-1-4	14.6	31	18	13	CL	62.75	NA	CL	SANDY LEAN CLAY	-
2017-241-001-005	B-1 (MP120.3)	11.3	B-1-5	14.6	-	-	-	-	-	-	-	-	-
2017-241-001-006	B-1 (MP120.3)	13.4	B-1-6	15.5	-	-	-	-	-	-	-	-	-
2017-241-001-007	B-1 (MP120.3)	16.5	B-1-7	16.1	35	20	15	CL	63.41	NA	CL	SANDY LEAN CLAY	-
2017-241-001-008	B-1 (MP120.3)	18.7	B-1-8	12.6	29	19	10	CL	37.24	NA	SC	CLAYEY SAND WITH GRAVEL	-
2017-241-001-009	B-1 (MP120.3)	46.2-47.1	R5	-	-	-	-	-	-	-	-	-	2,470
2017-241-001-010	B-1 (MP120.3)	51.8-52.3	R6	-	-	-	-	-	-	-	-	-	3,920
2017-241-001-011	B-1 (MP120.3)	55.2-55.8	R7	-	-	-	-	-	-	-	-	-	13,470
2017-241-001-012	B-2 (MP120.3)	1.2	B-2-1	21.9	-	-	-	-	-	-	-	-	-
2017-241-001-013	B-2 (MP120.3)	3.5	B-2-2	19.2	42	21	21	CL	73.59	NA	CL	LEAN CLAY WITH SAND	-
2017-241-001-014	B-2 (MP120.3)	5.8	B-2-3	9.6	0	0	0	Non-Plastic	30.61	NA	SM	SILTY SAND WITH GRAVEL	-
2017-241-001-015	B-2 (MP120.3)	18	B-2-4	23	24	19	5	CL-ML	25.43	-	SC-SM	SILTY, CLAYEY SAND	-
2017-241-001-016	B-2 (MP120.3)	23.2	B-2-6	11.9	-	-	-	-	-	-	-	-	-
2017-241-001-017	B-2 (MP120.3)	33.3-33.6	R5	-	-	-	-	-	-	-	-	-	3,610

MOISTURE CONTENT

ASTM D 2216-10

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2017-241-001

Lab ID:	001	002	003	004	005
Boring No.:	B-1(MP120.3)	B-1(MP120.3)	B-1(MP120.3)	B-1(MP120.3)	B-1(MP120.3)
Depth (ft):	0.9	4.0	6.5	9.0	11.3
Sample No.:	B-1-1	B-1-2	B-1-3	B-1-4	B-1-5
Tare Number	3102	2672	3243	3009	3136
Wt. of Tare & Wet Sample (g)	127.06	90.45	97.14	103.17	130.74
Wt. of Tare & Dry Sample (g)	106.94	78.61	83.29	90.93	114.92
Weight of Tare (g)	6.86	6.69	6.85	6.85	6.70
Weight of Water (g)	20.12	11.84	13.85	12.24	15.82
Weight of Dry Sample (g)	100.08	71.92	76.44	84.08	108.22
Water Content (%)	20.1	16.5	18.1	14.6	14.6

Lab ID	006	007	008	012	013
Boring No.	B-1(MP120.3)	B-1(MP120.3)	B-1(MP120.3)	B-2(MP120.3)	B-2(MP120.3)
Depth (ft)	13.4	16.5	18.7	1.2	3.5
Sample No.	B-1-6	B-1-7	B-1-8	B-2-1	B-2-2
Tare Number	3197	3208	2986	3112	3204
Wt. of Tare & Wet Sample (g)	90.47	76.20	81.73	139.66	95.01
Wt. of Tare & Dry Sample (g)	79.25	66.59	73.28	115.74	80.78
Weight of Tare (g)	6.76	6.74	6.34	6.76	6.77
Weight of Water (g)	11.22	9.61	8.45	23.92	14.23
Weight of Dry Sample (g)	72.49	59.85	66.94	108.98	74.01
Water Content (%)	15.5	16.1	12.6	21.9	19.2
Notes :					

Tes

sted By PC

Date 5/8/17

Checked By

TMP

Date 5/9/17

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

MOISTURE CONTENT

ASTM D 2216-10

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2017-241-001

Lab ID:	014	016
Boring No.:	B-2(MP120.3)	B-2(MP120.3)
Depth (ft):	5.8	23.2
Sample No.:	B-2-3	B-2-6
Tare Number	3241	2936
Wt. of Tare & Wet Sample (g)	94.85	128.42
Wt. of Tare & Dry Sample (g)	87.15	115.51
Weight of Tare (g)	6.80	6.63
Weight of Water (g)	7.70	12.91
Weight of Dry Sample (g)	80.35	108.88
Water Content (%)	9.6	11.9

Notes :

Tested By

Date

PC

5/8/17 Checked By

TMP

Date 5/9/17

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeClient Reference:ACProject No.:20°Lab ID:20°

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-002 Boring No.: B-1(MP120.3) Depth (ft): 4.0 Sample No.: B-1-2 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-002

Boring No.: B-1(MP120.3) Depth (ft): 4.0 Sample No.: B-1-2 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1516	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	486.60	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	436.79	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	142.91	Weight of Tare (g):	NA
Weight of Water (g):	49.81	Weight of Water (g):	NA
Weight of Dry Sample (g):	293.88	Weight of Dry Sample (g):	NA
Moisture Content (%):	16.9	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	293.88
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	NA 83.3	Weight of the Dry Sample (g): Weight of - #200 Material (g):	293.88 210.61
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	NA 83.3 NA	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	293.88 210.61 83.27
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 83.3 NA 0.00	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	293.88 210.61 83.27

k						
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	8.12	2.76	2.76	97.24	97.24
3/8"	9.50	2.73	0.93	3.69	96.31	96.31
#4	4.75	23.64	8.04	11.74	88.26	88.26
#10	2.00	17.97	6.11	17.85	82.15	82.15
#20	0.850	8.06	2.74	20.59	79.41	79.41
#40	0.425	1.88	0.64	21.23	78.77	78.77
#60	0.250	1.57	0.53	21.77	78.23	78.23
#140	0.106	8.80	2.99	24.76	75.24	75.24
#200	0.075	10.50	3.57	28.33	71.67	71.67
Pan	-	210.61	71.67	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/17/17
page 2 of 2		DCN: CT-S3C DAT	E 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec C	onsultan	ts, Inc.	I	Boring No.:	B-1(MP120.3)		
Client Reference:	ACP TXG00	07		I	Depth (ft):	4.0		
Project No.:	2017-241-00	1		:	Sample No.:	B-1-2		
Lab ID:	2017-241-00	1-002		So	il Description:	BROWN LEAN	CLAY	
Note: The USCS symb	bol used with t	his test re	efers only to	the minus No	b. 40	(Minus No. 40 sieve	material, Air drie	d)
sieve material. See the	"Sieve and Hy	/drometei	r Analysis" g	graph page fo	r the complete	material descript	ion.	
As Receive	ed Moistur	e Conte	ent		Liqui	d Limit Test		
AST	M D2216-10			1	2	3	М	
Tare Number:		26	672	237	144	208	U	
Wt. of Tare & Wet Sa	mple (g):	90).45	37.45	38.40	39.22	L	
Wt. of Tare & Dry San	nple (g):	78	3.61	32.44	33.50	34.53	т	
Weight of Tare (g):		6	.69	17.43	17.98	19.09	I	
Weight of Water (g):		1	1.8	5.0	4.9	4.7	Р	
Weight of Dry Sample	e (g):	7	1.9	15.0	15.5	15.4	0	
Was As Received MC	Preserved:	Y	es				I	
Moisture Content (%):	1	6.5	33.4	31.6	30.4	Ν	
Number of Blows:				16	25	32	Т	
Plastic Limit Test	l .	1	2	Range		Test Results		
Tana Niusahan			047				N 04	
Tare Number:	version (ev):	114	217			Liquia Limit (%): 31	
Wt of Toro & Dry Son	mple (g):	24.03	24.00			Plactic Limit (%	/). 10	
Wt. of Tare & Dry San	npie (g):	23.68	23.89			Plastic Limit (%	b): 18	
Weight of Tare (g):		18.42	18.66			Diacticity Index	(0/). 43	
Weight of Water (g):	(a)	0.9	1.0			Plasticity index	. (%): 13	
weight of Dry Sample	(g).	5.3	J.Z			LISCS Symboly		
Moisture Content (%	۱.	18 1	18 /	-0.3		USCS Symbol.	CL.	
Note: The accentable	J. range of the t	wo Moist	ure content	-0.3 s is + 1 4				
	Flow Curve	10 1000		510 ± 1.4	PI	asticity Chart		
						asticity onart		
36				60				
24				-				
34]		50				
32				-	CL	/ СН		
() ()		\otimes		a 10				
≥ ₃₀				8 40 ×				
. Iter				epc				
Ö ²⁸				¹ 30				
				tici	and the second sec		МН	
Š 20				20	/			
24				L				
					/ 🛛 /			
22				10				
20	10			<u>، لاب</u>				
I	Number of Blo	ws	100	0/	20 4	0 60 uid Limit (%)	80 100	
				CL- ML	Сiqi	Linit (70)		
Tested By RAL	Date	5/15/17	Chec	ked By	КС	Date 5/16/	/17	

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosyClient Reference:ACPProject No.:2017-Lab ID:2017-

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-004 Boring No.: B-1(MP120.3) Depth (ft): 9.0 Sample No.: B-1-4 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-004

Boring No.: B-1(MP120.3) Depth (ft): 9.0 Sample No.: B-1-4 Soil Color: Brown

Moisture Content of Passing 3/4"	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1511	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	487.07	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	444.19	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	147.50	Weight of Tare (g):	NA
Weight of Water (g):	42.88	Weight of Water (g):	NA
Weight of Dry Sample (g):	296.69	Weight of Dry Sample (g):	NA
Moisture Content (%):	14.5	Moisture Content (%):	NA
Moisture Content (%):	14.5	Moisture Content (%): Weight of the Dry Sample (g):	NA 296.69
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	14.5 NA 110.5	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g):	NA 296.69 186.16
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	14.5 NA 110.5 NA	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	296.69 186.16 110.53
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	14.5 NA 110.5 NA 0.00	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	296.69 186.16 110.53

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
0120	oporning	Rotaniou	Rotainou	Retained	1 1101	Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	12.01	4.05	4.05	95.95	95.95
3/8"	9.50	2.64	0.89	4.94	95.06	95.06
#4	4.75	13.36	4.50	9.44	90.56	90.56
#10	2.00	25.61	8.63	18.07	81.93	81.93
#20	0.850	22.62	7.62	25.70	74.30	74.30
#40	0.425	7.29	2.46	28.15	71.85	71.85
#60	0.250	3.59	1.21	29.36	70.64	70.64
#140	0.106	13.94	4.70	34.06	65.94	65.94
#200	0.075	9.47	3.19	37.25	62.75	62.75
Pan	-	186.16	62.75	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/12/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Client: Geosyntec Consultants, Inc.				Boring No.:	B-1(MP120.3)	
Client Reference:	ACP TXG000)7		0	Depth (ft):	9.0		
Project No.:	2017-241-00	1		5	Sample No.:	B-1-4		
Lab ID:	2017-241-001-004			Soi	il Description:	BROWN LEA	N CLAY	
Note: The USCS sy	mbol used with t	his test refe	ers only to	the minus No	. 40	(Minus No. 40 si	eve material,	Air dried)
sieve material. See t	the "Sieve and Hy	drometer A	Analysis" g	raph page for	r the complete	material descr	ription .	
As Rece	ived Moistur	e Conter	ht		Liqui	d Limit Tes	t	
А	STM D2216-10			1	2	3	Μ	
Tare Number:		300	9	162	196	1101	U	
Wt. of Tare & Wet \$	Sample (g):	103.	17	41.54	40.24	39.67	L	
Wt. of Tare & Dry S	Sample (g):	90.9	93	36.04	34.95	34.43	Т	
Weight of Tare (g):		6.8	5	17.50	17.71	18.20	I I	
Weight of Water (g)):	12.	2	5.5	5.3	5.2	Р	
Weight of Dry Sam	ole (g):	84.	1	18.5	17.2	16.2	0	
Was As Received N	AC Preserved:	Ye	s				I.	
Moisture Content	(%):	14.	6	29.7	30.7	32.3	Ν	
Number of Blows:	. ,			35	27	20	Т	
Plastic Limit Te	est	1	2	Range		Test Resul	ts	
Tare Number:		217	122			Liquid Limit	(%):	31
Wt. of Tare & Wet S	Sample (g):	25.71	24.81				(,,,,,	•
Wt. of Tare & Dry S	Sample (g):	24.61	23.85			Plastic Limit	(%):	18
Weight of Tare (g):	1 (8)	18.65	18.67				()	
Weight of Water (g)):	1.1	1.0			Plasticity Ind	lex (%):	13
Weight of Dry Sam	, ole (a):	6.0	5.2				()	-
0, 7, 1						USCS Symbo	ol:	CL
Moisture Content	(%):	18.5	18.5	-0.1		_		
Note: The acceptab	ole range of the t	wo Moistur	e contents	s is ± 1.4				
	Flow Curve				P	asticity Chart	:	
34				60			/	
				-				
32		\otimes		50				
30				-	CL	СН		
(%)				§ 40		/		
28 E				dex (
tuo .				u 30				
ם 26				icity			МН	
Nat				ast				
24								
				-	1 🛛 🖊			
22				10				
				7				
20				。 /	ML			
1	10 Number of Bla	we	100	0	20 4	0 60	80	100
	Number of BIO	wə		CL- ML	Liq	uid Limit (%)		

 Tested By
 BS
 Date
 5/11/17
 Checked By
 TMP
 Date
 5/12/17

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13</t

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GenClient Reference:ACProject No.:201Lab ID:201

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-007 Boring No.: B-1(MP120.3) Depth (ft): 16.5 Sample No.: B-1-7 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-007

Boring No.: B-1(MP120.3) Depth (ft): 16.5 Sample No.: B-1-7 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1465	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	434.67	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	392.55	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	145.65	Weight of Tare (g):	NA
Weight of Water (g):	42.12	Weight of Water (g):	NA
Weight of Dry Sample (g):	246.90	Weight of Dry Sample (g):	NA
Moisture Content (%):	17.1	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	 	Weight of the Dry Sample (g):	246.90
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	NA 90.3	Weight of the Dry Sample (g): Weight of - #200 Material (g):	246.90 156.57
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	NA 90.3 NA	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	246.90 156.57 90.33
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 90.3 NA 0.00	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	246.90 156.57 90.33

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	6.90	2.79	2.79	97.21	97.21
#10	2.00	21.38	8.66	11.45	88.55	88.55
#20	0.850	17.46	7.07	18.53	81.47	81.47
#40	0.425	6.80	2.75	21.28	78.72	78.72
#60	0.250	4.77	1.93	23.21	76.79	76.79
#140	0.106	22.31	9.04	32.25	67.75	67.75
#200	0.075	10.71	4.34	36.59	63.41	63.41
Pan	-	156.57	63.41	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/12/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec C	onsultants,	Inc.	E	Boring No.:	B-1(MP120.3))	
Client Reference:	ence: ACP TXG0007			C	Depth (ft):	16.5		
Project No.:	2017-241-00	1		S	Sample No.:	B-1-7		
Lab ID:	2017-241-001-007			Soi	I Description:	BROWN LEA	N CLAY	
Note: The USCS sy	mbol used with th	his test refe	rs only to	the minus No	. 40	(Minus No. 40 si	eve material, A	ir dried)
sieve material. See	the "Sieve and Hy	drometer A	nalysis" g	raph page for	the complete	material descr	iption .	
AS Rece		Content			LIQU		t	
	ASTM D2216-10			1	2	3	IVI 	
Tare Number:	0	3208	3	3	114	135	U	
Wt. of Tare & Wet	Sample (g):	76.20)	39.91	40.48	39.79	L	
Wt. of Tare & Dry S	sample (g):	66.5	9	34.62	34.80	34.30		
weight of Tare (g):	λ.	0.74	•	18.89	18.43	19.41	I D	
weight of water (g): 	9.6		5.3	5.7	5.5	P	
Weight of Dry Sam	pie (g): MC Brossnuod:	59.9 V oo		15.7	16.4	14.9	0	
		res			047	20.0		
Moisture Content	(%):	16.1		33.6	34.7	36.9	N	
Number of Blows:				34	24	15		
Plastic Limit Te	est	1	2	Range		Test Resul	ts	
		470	400				(0/)	05
Tare Number:		179	183				(%):	35
Wt of Tare & Wei	Sample (g).	20.90	20.49			Blactic Limit	(0/).	20
Weight of Tare (g):	sample (g).	24.00 10.22	24.43				(%).	20
Weight of Mate (g).	٨.	10.00	19.29			Plasticity Ind	lox (%).	15
Weight of Dry Sam	nle (a):	6.4	5.1				EX (/0) .	15
Weight of Dry Oan	pic (g).	0.4	0.1			USCS Symbo	ol·	CI
Moisture Content	(%):	20.2	20.6	-0.5			/11	01
Note: The acceptal	ble range of the t	wo Moisture	e contents	s is ± 1.4				
	Flow Curve				P	lasticity Chart		
38				60				_
36				-				1
34				50	CL	, CH		
% 32				§ 40			\bigwedge	
30 outen								
0 28				Sit V			мн	
26 Xat				20				
24				-				
22				10				
₂₀					ML			
1	10 Number of Play	NC	100	0/	20 4	0 60	80	100
	NUMBER OF BIO	ws		CL- ML	Liq	uid Limit (%)		

 Tested By
 BS
 Date
 5/11/17
 Checked By
 TMP
 Date
 5/12/17

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 DCN: CTS4B, REV. 5, 9/13/13</t

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosynClient Reference:ACP TProject No.:2017-2Lab ID:2017-2

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-008 Boring No.: B-1(MP120.3) Depth (ft): 18.7 Sample No.: B-1-8 Soil Color: Brown

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/12/17
page 1 of 2		DCN: CT-S3C DA	ATE 3/20/13 REV	ISION: 3				

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-008

Boring No.: B-1(MP120.3) Depth (ft): 18.7 Sample No.: B-1-8 Soil Color: Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample		
Tare No.:	1485	Tare No.:	NA	
Wt. of Tare & Wet Sample (g):	453.31	Weight of Tare & Wet Sample (g):	NA	
Wt. of Tare & Dry Sample (g):	421.67	Weight of Tare & Dry Sample (g):	NA	
Weight of Tare (g):	147.71	Weight of Tare (g):	NA	
Weight of Water (g):	31.64	Weight of Water (g):	NA	
Weight of Dry Sample (g):	273.96	Weight of Dry Sample (g):	NA	
			I	
Moisture Content (%):	11.5	Moisture Content (%):	NA	
Moisture Content (%):	11.5	Moisture Content (%):	273.96	
Moisture Content (%): Wet Weight of -3/4" Sample (g):	11.5 NA 172.0	Weight of the Dry Sample (g):	273.96	
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	11.5 NA 172.0 NA	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	273.96 102.01 171.95	
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	11.5 NA 172.0 NA 0.00	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	273.96 102.01 171.95	

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	31.12	11.36	11.36	88.64	88.64
3/8"	9.50	9.64	3.52	14.88	85.12	85.12
#4	4.75	19.38	7.07	21.95	78.05	78.05
#10	2.00	15.39	5.62	27.57	72.43	72.43
#20	0.850	10.27	3.75	31.32	68.68	68.68
#40	0.425	6.41	2.34	33.66	66.34	66.34
#60	0.250	15.19	5.54	39.20	60.80	60.80
#140	0.106	49.79	18.17	57.38	42.62	42.62
#200	0.075	14.76	5.39	62.76	37.24	37.24
Pan	-	102.01	37.24	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/12/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec	Consultant	s, Inc.		Boring No.:	B-1(MP120	.3)	
Client Referen	ice: ACP TXG00	007			Depth (ft):	18.7		
Project No.:	2017-241-0	01			Sample No.:	B-1-8		
Lab ID:	2017-241-0	01-008		Sc	oil Description:	BROWN LE	EAN CLAY	
Note: The USC	CS symbol used with	this test re	fers only to	the minus N	o. 40	(Minus No. 40	sieve material,	Air dried)
sieve material.	See the "Sieve and H	lydrometer	Analysis" g	graph page fo	or the complete	material des	cription.	
As R	Received Moistur	re Conte	nt		Liqui	d Limit Te	est	
	ASTM D2216-10			1	2	3	М	
Tare Number:		29	86	4	139	167	U	
Wt. of Tare &	Wet Sample (g):	81.	.73	41.14	41.54	41.51	L	
Wt. of Tare &	Dry Sample (g):	73.	.28	36.51	36.77	36.11	т	
Weight of Tare	e (g):	6.	34	18.92	19.66	18.42	I.	
Weight of Wat	ter (g):	8	.5	4.6	4.8	5.4	Р	
Weight of Dry	Sample (g):	66	6.9	17.6	17.1	17.7	0	
Was As Recei	ved MC Preserved:	Ye	es				1	
Moisture Con	tent (%):	12	2.6	26.3	27.9	30.5	Ν	
Number of Bl	ows:		-	35	27	19	т	
				4				
Plastic Lim	it Test	1	2	Range		Test Res	ults	
Tare Number:	Wat Sample (a):	231	224			Liquid Lim	it (%):	29
Wt. of Tare &	Viet Sample (g).	20.74	20.07			Blactic Lim		10
Weight of Tar	Dry Sample (g).	24.70	20.00			FIASUC LIII	iit (<i>7</i> 0):	19
Weight of Wei	= (g):	19.07	19.70			Diagticity	nday (0/).	10
Weight of Dru	ler (g): Somple (g):	1.0 5.1	1.1 E 0			Plasticity I	ndex (%):	10
weight of Dry	Sample (g).	5.1	5.0				hali	C 1
Moistura Con	topt $(0/)$.	10 0	10 7	0.1		USCS Sym	DOI:	0L
Noto: The see	antable range of the	10.0	IO.1					
Note. The acc				5 15 ± 1.4		acticity Cha	r t	
	Flow Curve				FI	asticity cha	ur	
32				60				
30				50	CL	/ 0	сн	<u> </u>
% 28		<u> </u>		<u>الم</u>				
26 				apul 30				
5				city			МН	
A A A A A A A A A A A A A A A A A A A				asti				
> 24				ä ²⁰				
[-				
22				10				
20					ML			
	10		100	0	20 4	0 60	80	100
	Number of BI	ows		CL- ML	Liqu	uid Limit (%)		
Tested By	BS Date	5/11/17	Chec	ked By	TMP	Date	5/12/17	
page 1 of 1 DCN	: CTS4B, REV. 5, 9/13/13			-				

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

Client: Client Project: Project No.: Lab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-009		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP120.3) 46.2-47.1 R-5 : As Received-Unpreser	ved
Specimen	Weight (g):	458.47			
SPECIMEN	<u>I LENGTH (in)</u>		SPE	ECIMEN DIAMETER (in):	
	Reading 1:	3.99		Reading 1:	1.84
	Reading 2:	3.99		Reading 2:	1.84
	Reading 3:	3.99		Average:	1.84
	Average:	3.99		Area (in ²):	2.65
				L/D:	2.17
MOISTURE	CONTENT				
Tare Numbe	er:	3059		Total Load (lb):	6,560
Wt. of Tare	& Wet Sample (g):	454.61	Uniaxial Comp	pressive Strength (psi):	2,470
Wt. of Tare	& Dry Sample (g):	451.33			
Weight of Ta	are (g):	6.71		Fracture Type:	Cone & Split
Weight of W	/et Sample (g):	447.90			
Sample Volu	ume (cm ³):	173.53		Rate of Loading (lb/sec):	48
Moisture Co	ontent (%):	0.74		Time to Break (min:sec):	2:16.50
Unit Wet We	eight (g/cm ³):	2.642	Devia	ation From Straightness ² :	
Unit Wet We	eight (pcf):	164.9			
Unit Dry We	eight (g/cm³):	2.623	AXIAL: Fail	TOP: Pass	BOTTOM: Pass
Unit Dry We	eight (pcf):	163.7			

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08
- Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.
- 5) D4543 Prep and D7012 Testing Equipment Used:
- G788 Compression Machine,
- G1661 Digital Calipers, G1380 Dial Gauge,
- G1616 Straight Edge, G1571 Feeler Gauge,
- G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	JAC	Date: 5/13/17	Checked By:	KC	Date: 5/17/17
page 1 of 1	DCN: CT45A; Revision No.:	1e3 Revision Date: 4/5/17			

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

lient: lient Project: roject No.: ab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-010		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP120.3) 51.8-52.3 R-6 : As Received-Unpreser	ved
Specimen	Weight (g):	467.89			
SPECIMEN	N LENGTH (in)		SPE	CIMEN DIAMETER (in):	-
	Reading 1:	3.99		Reading 1:	1.85
	Reading 2:	3.99		Reading 2:	1.85
	Reading 3:	3.99		Average:	1.85
	Average:	3.99		Area (in ²):	2.69
				L/D:	2.15
MOISTURE	<u>CONTENT</u>				
Tare Numbe	er:	2988		Total Load (lb):	10,570
Wt. of Tare	& Wet Sample (g):	472.30	Uniaxial Comp	pressive Strength (psi):	3,920
Wt. of Tare	& Dry Sample (g):	468.60			
Weight of T	are (g):	6.70		Fracture Type:	Cone & Split
Weight of W	Vet Sample (g):	465.60			
Sample Vol	ume (cm ³):	176.05		Rate of Loading (lb/sec):	66
Moisture Co	ontent (%):	0.80		Time to Break (min:sec):	2:39.66
Unit Wet W	eight (g/cm ³):	2.658	Devia	tion From Straightness ² :	
Unit Wet W	eight (pcf):	165.8			
Unit Dry W	eight (g/cm ³):	2.637	AXIAL: Pass	TOP: Pass	BOTTOM: Pass
Unit Dry W	eight (pcf):	164.5			

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08
- Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.
- 5) D4543 Prep and D7012 Testing Equipment Used:
- G788 Compression Machine,
- G1661 Digital Calipers, G1380 Dial Gauge,
- G1616 Straight Edge, G1571 Feeler Gauge,
- G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	JAC	Date:	5/13/17	Checked By:	KC	Date:	5/17/17
page 1 of 1	DCN: CT45A; Revision No.	: 1e3 Revision Date: 4	/5/17				

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

Client: Client Project: Project No.: Lab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-011		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP120.3) 55.2-55.8 R-7 :: As Received-Unpreser	ved
Specimen	Weight (g):	483.60			
SPECIMEN	<u>I LENGTH (in)</u>		SPE	ECIMEN DIAMETER (in):	
	Reading 1:	3.98		Reading 1:	1.97
	Reading 2:	3.98		Reading 2:	1.97
	Reading 3:	3.98		Average:	1.97
	Average:	3.98		Area (in ²):	3.05
				L/D:	2.02
MOISTURE	CONTENT				
Tare Numbe	er:	3007		Total Load (lb):	41,150
Wt. of Tare	& Wet Sample (g):	485.81	Uniaxial Comp	pressive Strength (psi):	13,470
Wt. of Tare	& Dry Sample (g):	484.85			
Weight of T	are (g):	6.75		Fracture Type:	Cone & Split
Weight of W	/et Sample (g):	479.06			
Sample Vol	ume (cm ³):	199.28		Rate of Loading (lb/sec):	144
Moisture Co	ontent (%):	0.20		Time to Break (min:sec):	4:46.66
Unit Wet W	eight (g/cm ³):	2.427	Devia	ation From Straightness ² :	
Unit Wet W	eight (pcf):	151.4			
Unit Dry W	eight (g/cm ³):	2.422	AXIAL: Pass	TOP: Pass	BOTTOM: Pass
Unit Dry W	eight (pcf):	151.1			

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08
- Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.
- 5) D4543 Prep and D7012 Testing Equipment Used: G788 Compression Machine,
 - G1661 Digital Calipers, G1380 Dial Gauge,
 - G1616 Straight Edge, G1571 Feeler Gauge,
 - G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

lested By:	JAC	Date: 5/13/17	Checked By:	KC	Date: 5/1//1/
page 1 of 1	DCN: CT45A; Revision N	No.: 1e3 Revision Date: 4/5/17			

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosClient Reference:ACPProject No.:2017Lab ID:2017

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-013 Boring No.: B-2(MP120.3) Depth (ft): 3.5 Sample No.: B-2-2 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-013

Boring No.: B-2(MP120.3) Depth (ft): 3.5 Sample No.: B-2-2 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample			
Tare No.:	1489	Tare No.:	NA		
Wt. of Tare & Wet Sample (g):	476.85	Weight of Tare & Wet Sample (g):	NA		
Wt. of Tare & Dry Sample (g):	421.10	Weight of Tare & Dry Sample (g):	NA		
Weight of Tare (g):	146.65	Weight of Tare (g):	NA		
Weight of Water (g):	55.75	Weight of Water (g):	NA		
Weight of Dry Sample (g):	274.45	Weight of Dry Sample (g):	NA		
Moisture Content (%):	20.3	Moisture Content (%):	NA		
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	274.45		
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	NA 72.5	Weight of the Dry Sample (g): Weight of - #200 Material (g):	274.45 201.96		
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	NA 72.5 NA	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	274.45 201.96 72.49		
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 72.5 NA 0.00	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	274.45 201.96 72.49		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
0.20	oponing			Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	3.29	1.20	1.20	98.80	98.80
3/8"	9.50	5.95	2.17	3.37	96.63	96.63
#4	4.75	9.70	3.53	6.90	93.10	93.10
#10	2.00	17.79	6.48	13.38	86.62	86.62
#20	0.850	10.89	3.97	17.35	82.65	82.65
#40	0.425	2.79	1.02	18.37	81.63	81.63
#60	0.250	1.69	0.62	18.98	81.02	81.02
#140	0.106	10.50	3.83	22.81	77.19	77.19
#200	0.075	9.89	3.60	26.41	73.59	73.59
Pan	-	201.96	73.59	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/12/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec (Consultants	, Inc.	E	Boring No.:	B-2(MP120.3	3)	
Client Reference:	ACP TXG00	07		C	Depth (ft):	3.5		
Project No.:	2017-241-00	01		5	Sample No.:	B-2-2		
Lab ID:	2017-241-00	01-013		Soi	I Description:	BROWN LEA	N CLAY	
Note: The USCS	symbol used with	this test ref	ers only to	the minus No	. 40	(Minus No. 40 s	ieve material, /	Air dried)
sieve material. Se	e the "Sieve and H	ydrometer /	Analysis" g	graph page foi	r the complete	material desc	ription .	
As Rec	ceived Moistur	e Conter	nt		Liqui	d Limit Tes	st	
	ASTM D2216-10			1	2	3	М	
Tare Number:		320)4	17	150	191	U	
Wt. of Tare & We	et Sample (g):	95.0	D1	38.16	39.92	39.61	L	
Wt. of Tare & Dry	/ Sample (g):	80.	78	32.33	34.04	32.91	т	
Weight of Tare (g	ı):	6.7	7	17.76	19.77	17.58	I	
Weight of Water	(g):	14.	2	5.8	5.9	6.7	Р	
Weight of Dry Sa	mple (g):	74.	0	14.6	14.3	15.3	Ο	
Was As Received	d MC Preserved:	Ye	S				I	
Moisture Conten	nt (%):	19.	2	40.0	41.2	43.7	Ν	
Number of Blow	s:			35	27	18	Т	
Plastic Limit	Test	1	2	Range		Test Resu	lts	
Tare Number:	at Sample (a):	250 24.54	241			Liquid Limit	(%):	42
Wt of Tare & Dry	v Sample (g):	27.07	20.22			Plastic Limit	t (%)·	21
Weight of Tare (olimpie (g).	17 50	18 52				. (70).	21
Weight of Water	(a):	13	13			Plasticity In	dox (%).	21
Weight of Dry Sa	(9). mple (a):	5.8	6.4				uer (70).	21
Weight of Dry Ca	inpic (g).	0.0	0.4			LISCS Symb	ol.	CI
Moisture Conten	nt (%):	21.8	20.9	0.9		CCCC Cymb	01.	0L
Note: The accept	able range of the	two Moistu	re content	s is + 14				
	Flow Curve		• • • • • • • •		PI	asticity Char	t	
45						-		
40				50	CL	CI	4	
6%) 35				40 (%)				
Cont				00 01 01 01 01 01 01 01 01 01 01 01 01 0				
A Mate				Dlastic		⊗∕		
25				10				
20	10		100	0				
•	Number of Bl	ows		CL- ML	20 40 Liqu	0 60 Jid Limit (%)	80	100
Tested By BS	S Date	5/11/17	Chec	ked By	TMP	Date 5/	/12/17	
page 1 of 1 DCN: CTS	S4B, REV. 5, 9/13/13							

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosyntecClient Reference:ACP TXG0Project No.:2017-241-0Lab ID:2017-241-0

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-014 Boring No.: B-(MP120.3) Depth (ft): 5.8 Sample No.: B-2-3 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-014

Boring No.: B-(MP120.3) Depth (ft): 5.8 Sample No.: B-2-3 Soil Color: Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample	
Tare No.:	1513	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	471.98	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	445.52	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	148.54	Weight of Tare (g):	NA
Weight of Water (g):	26.46	Weight of Water (g):	NA
Weight of Dry Sample (g):	296.98	Weight of Dry Sample (g):	NA
Moisture Content (%):	8.9	Moisture Content (%):	NA
Wet Weight of $-3/4$ " Sample (a):	NA	Weight of the Dry Sample (a):	296.98
			200.00
Dry Weight of - 3/4" Sample (g)	206.1	Weight of the Dry Sample (g): Weight of $- #200$ Material (g):	90 90
Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	206.1 NA	Weight of - #200 Material (g): Weight of + #200 Material (g):	90.90 206.08
Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	206.1 NA 0.00	Weight of - #200 Material (g): Weight of + #200 Material (g):	90.90 206.08

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	10.54	3.55	3.55	96.45	96.45
3/8"	9.50	18.16	6.11	9.66	90.34	90.34
#4	4.75	29.12	9.81	19.47	80.53	80.53
#10	2.00	14.26	4.80	24.27	75.73	75.73
#20	0.850	9.68	3.26	27.53	72.47	72.47
#40	0.425	10.82	3.64	31.17	68.83	68.83
#60	0.250	21.64	7.29	38.46	61.54	61.54
#140	0.106	74.70	25.15	63.61	36.39	36.39
#200	0.075	17.16	5.78	69.39	30.61	30.61
Pan	-	90.90	30.61	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/12/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID: Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-014

Boring No.: Depth (ft): Sample No.: Color:

B-2(MP120.3) 5.8 B-2-3 Brown (MInus No. 40 sieve material)

As Received Water Content

Water Content (%)

Tare Number	3241
Wt. of Tare & Wet Sample (g)	94.85
Wt. of Tare & Dry Sample (g)	87.15
Weight of Tare (g)	6.80
Weight of Water (g)	7.70
Weight of Dry Sample (g)	80.35

9.6

NON - PLASTIC MATERIAL

Tested By BS Date 5/11/17 Checked By TMP Date 5/12/17

/DCN: CT-S4C, DATE: 4/27/17, REVISION : 4e

S:\Excel\Excel QA\Spreadsheets\Limit NP.xls

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosClient Reference:ACPProject No.:2017Lab ID:2017

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-015 Boring No.: B-2(MP120.3) Depth (ft): 18.0 Sample No.: B-2-4 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-001Lab ID:2017-241-001-015

Boring No.: B-2(MP120.3) Depth (ft): 18.0 Sample No.: B-2-4 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1424	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	602.53	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	514.12	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	145.81	Weight of Tare (g):	NA
Weight of Water (g):	88.41	Weight of Water (g):	NA
Weight of Dry Sample (g):	368.31	Weight of Dry Sample (g):	NA
Moisture Content (%):	24.0	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	368.31
Dry Weight of - 3/4" Sample (g):	265.8	Weight of - #200 Material (g):	93.66
Wet Weight of +3/4" Sample (g):	NA	Weight of + #200 Material (g):	274.65
Dry Weight of + 3/4" Sample (g):	8.88		
Total Dry Weight of Sample (g):	NA		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	8.88	2.41	2.41	97.59	97.59
1/2"	12.50	3.65	0.99	3.40	96.60	96.60
3/8"	9.50	1.68	0.46	3.86	96.14	96.14
#4	4.75	6.88	1.87	5.73	94.27	94.27
#10	2.00	27.98	7.60	13.32	86.68	86.68
#20	0.850	66.49	18.05	31.38	68.62	68.62
#40	0.425	60.54	16.44	47.81	52.19	52.19
#60	0.250	51.21	13.90	61.72	38.28	38.28
#140	0.106	36.37	9.87	71.59	28.41	28.41
#200	0.075	10.97	2.98	74.57	25.43	25.43
Pan	-	93.66	25.43	100.00	-	-

	Tested By	HL	Date	5/10/17	Checked By	TMP	Date	5/17/17
page 2 of 2		DCN: CT-S3C DATE	3/20/13 REVI	SION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geo	syntec Consultants,	Inc.	E	Boring No.:	B-2(MP120.3)	1	
Client Refe	erence: ACP	TXG0007		Γ	Depth (ft):	18.0		
Project No	o.: 2017	7-241-001			Sample No.:	B-2-4		
Lab ID:	2017	7-241-001-015		So	il Description	: BROWN SILT	Y CLAY	
Note: The	USCS symbol us	ed with this test refe	ers only to	the minus No	. 40	(Minus No. 40 si	eve material	, Air dried)
sieve mate	rial. See the "Siev	e and Hydrometer A	nalysis" g	graph page for	r the complete	e material descri	iption .	
A	s Received M	loisture Conten	t		Liqu	id Limit Test	Ĺ	
	ASTM D2	216-10		1	2	3	Μ	
Tare Num	ber:	321	6	207	1101	438	U	
Wt. of Tar	e & Wet Sample	(g): 130. ⁻	72	38.76	38.34	37.37	L	
Wt. of Tar	e & Dry Sample (g): 107.	51	34.51	34.35	33.56	Т	
Weight of	Tare (g):	6.7	6	18.35	18.20	17.17	I	
Weight of	Water (g):	23.	2	4.3	4.0	3.8	Р	
Weight of	Dry Sample (g):	100	.8	16.2	16.2	16.4	0	
Was As R	eceived MC Pres	erved: Yes	5				I	
Moisture	Content (%):	23.	0	26.3	24.7	23.2	Ν	
Number o	f Blows:			15	23	35	T	
	• • • •	-		_		<u> </u>		
Plastic L	limit Test	1	2	Range		Test Resul	ts	
Tare Numl	ber:	175	135			Liquid Limit	(%):	24
Wt. of Tar	e & Wet Sample	(g): 26.15	25.49			-		
Wt. of Tar	e & Dry Sample (g): 25.13	24.52			Plastic Limit	(%):	19
Weight of	Tare (g):	19.67	19.40					
Weight of	Water (g):	1.0	1.0			Plasticity Ind	ex (%):	5
Weight of	Dry Sample (g):	5.5	5.1			-		
	-					USCS Symbo	ol:	CL-ML
Moisture	Content (%):	18.7	18.9	-0.3				
Note: The	acceptable range	e of the two Moistur	e content	s is ± 1.4				
	Flow	Curve			Р	lasticity Chart		
²⁷ F				60				
				-		ļ į	, , , ,	$\boldsymbol{\Lambda}$
26				50				
25				-	UL	СП		
(%)				% 40		/		
but 24) xə				
, nte								
Ŭ ,, [⁰⁰ it v	/		ML	,
ate				stic				
≥				20				
22				-				
				10				
21								
<u></u> :					ML			
20 -		10	100	0	20 /	10 60	80	1 00
	Num	ber of Blows			Liq	uid Limit (%)	00	100

Tested By RAL Date 5/15/17 Checked By TMP Date 5/16/17

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

Client: Client Project: Project No.: ab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-001 2017-241-001-017		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-2 (MP120.3) 33.3-33.6 R-5 : As Received-Unpreser	ved
Specimen	Weight (g):	398.78			
SPECIMEN	<u>I LENGTH (in)</u>		SPE	CIMEN DIAMETER (in)	<u>.</u>
	Reading 1:	3.47		Reading 1	1.84
	Reading 2:	3.47		Reading 2	: 1.84
	Reading 3:	3.47		Average	1.84
	Average:	3.47		Area (in ²)	2.66
				L/D	1.88
MOISTURE	CONTENT				
Tare Numbe	er:	2661		Total Load (Ib)	9,620
Wt. of Tare	& Wet Sample (g):	405.44	Uniaxial Comp	pressive Strength (psi):	3,610
Wt. of Tare	& Dry Sample (g):	395.38			
Weight of T	are (g):	6.90		Fracture Type	Cone & Split
Weight of W	Vet Sample (g):	398.54			
Sample Vol	ume (cm ³):	151.25		Rate of Loading (lb/sec)	: 70
Moisture Co	ontent (%):	2.59		Time to Break (min:sec)	: 2:17.31
Unit Wet W	eight (g/cm ³):	2.637	Devia	tion From Straightness ²	:
Unit Wet W	eight (pcf):	164.5			
Unit Dry W	eight (g/cm ³):	2.570	AXIAL: Pass	TOP: Pass	BOTTOM: Pass
Unit Dry W	eight (pcf):	160.4			

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08

Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.

5) D4543 Prep and D7012 Testing Equipment Used: G788 Compression Machine, G1661 Digital Calipers, G1380 Dial Gauge, G1616 Straight Edge, G1571 Feeler Gauge,

G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

6) Sample short of L/D parameters.

Tested By:	JAC	Date:	5/13/17	Checked By:	KC	Date:	5/17/17
page 1 of 1	DCN: CT45A; Revision No.:	: 1e3 Revision Date: 4	/5/17				

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

520 Pike Street, Suite 1375 Seattle, WA 98101 PH 206.496.1456 www.geosyntec.com

30 May 2017 TXG0007-012-6303

VIA EMAIL

Colin Olness, Contractor Atlantic Coast Pipeline 99 Edmiston Way Buckhannon, WV 26201

Subject: Geotechnical Investigation at Potential Slope Instability Site George Washington National Forest (GWNF) Atlantic Coast Pipeline (ACP) Project Route Revision 11B, Segment AP-1, MP 123.1 Augusta County, Virginia

Dear Mr. Olness:

This data summary report has been prepared by Geosyntec Consultants, Inc. (Geosyntec) for Dominion Transmission, Inc. (DTI) to present the geotechnical drilling investigation performed at a geohazard site located within the George Washington National Forest (GWNF) at Milepost (MP 123.1) along Segment AP-1 of the Atlantic Coast Pipeline (ACP) Route Revision 11B (Project; Figure 1). The objective of this geotechnical drilling investigation was to characterize the subsurface conditions at the site and confirm or preclude suspected slope instability identified as part of our Phase 2 investigation [Geosyntec, 2016a]¹, so that if required, measures may be designed to mitigate the effects of potential ground movement on the pipeline. This geotechnical investigation was performed in accordance with requirements of the United States Forest Service (USFS) Special Use Permit (authorization I.D. No. GWP433202T), dated 11 April 2016 and the completed work plan [Geosyntec, 2016b]². This report summarizes activities completed in the

¹ Geosyntec Consultants, 2016a. "Geohazard Analysis Program Phase 2 Report, Atlantic Coast Pipeline and Supply Header Project", submitted to Dominion Transmission, Inc., dated 29 July 2016.

² Geosyntec Consultants, 2016b. "Work Plan for Geotechnical Investigations at Potential Slope Instability Sites, George Washington National Forest (GWNF), Atlantic Coast Pipeline Project, Route Revision 11a Segment AP-1 MP 120.3 and MP 123.1, Highland County, Virginia", submitted to Dominion Transmission, Inc., dated 26 September 2016.

field, a description of the geologic conditions observed at the site, and provides the results of the geotechnical laboratory testing program.

GEOTECHNICAL INVESTIGATION

This geotechnical drilling investigation included a site reconnaissance, access road improvements, geotechnical borings, instrumentation installation and monitoring, and geotechnical laboratory testing.

Site Reconnaissance

Our field reconnaissance performed on 25 August 2016 consisted of a site visit by a Principal Engineering Geologist from Geosyntec, two representatives from Horn and Associates (drilling subcontractor), and two representatives from the ACP to evaluate existing site conditions and access to the identified geohazard site location. The objective of the field reconnaissance was to familiarize the drilling contractor with the site conditions, identify potential access routes, evaluate the number and type of exploratory borings needed to adequately characterize the site, and select locations for the exploratory borings in the field.

Health and Safety

Prior to conducting our field investigation, Geosyntec updated our existing site-specific Health and Safety Plan (HASP) in accordance with Occupational Safety & Health Administration (OSHA) requirements. The updated HASP addressed potential hazards at the two site locations, including requirements for worker protection based on the anticipated activities. Additionally, the HASP also included directions to nearest emergency medical facility. Prior to commencing work at the site, Geosyntec also delineated the locations of the individual explorations and notified Underground Service Alert (USA, Dig-Alert) to identify the locations of any existing underground utilities within the immediate vicinity.

Site Access and Improvements

Drilling locations at GWNF MP 123.1 were accessed using existing USFS roads and both active and abandoned logging roads. Due to the remote locations of the investigation site, minor grading and road restoration activities were performed where no previous access existed. Road restoration and grading work was performed by Horn and Associates utilizing a John Deere 85D tracked excavator. Work consisted of trimming secondary vegetation growth, smoothing the ground surface, and localized widening and leveling where cross-slope conditions would not permit safe passage of a light weighted track mounted drill rig. Drilling locations and temporary access routes at GWNF MP 123.1 were selected to minimize grading and to minimize removal of timber greater than 4-inch diameter-breast-height (DBH), to the extent practical.

Where ground disturbance was required, erosion and sediment control Best Management Practices (BMPs) were implemented to minimize the potential for erosion and/or sediment transport to adjacent areas outside the limits of disturbance. BMPs consisted of 8-inch silt socks installed along the edge of the graded access roads and the drilling investigation pads. Upon completion of drilling activities, excess cuttings from the borings were thinly spread within the limits of disturbance and the ground surface was re-contoured to match that of pre-existing conditions to the extent feasible. Locally sourced straw and an approved seed mix specified by the USFS were hand broadcasted along the surface of graded areas to help reduce erosion and sediment transport and promote vegetative growth. Silt socks were slit and spread at the surface.

Following completion of drilling activities at MP 123.1 and equipment demobilization, the preexisting dirt berm barrier (tank trap) located at the start of the recently constructed logging road was reinstalled and restored. Restoration activities included casting of approved seed mix and covered by straw. Restoration activities were also completed at select areas along the USFS road and active/abandoned logging roads where wet road conditions resulting in tire rutting. A photographic log documenting completed road improvement and site restoration activities is provided in Appendix A.

Subsurface Explorations

This geotechnical investigation included drilling two exploratory borings at the GWNF MP 123.1 geohazard site location along the northwestern facing slope (designated Borings B-1 and B-2; Figure 1). Borings were drilled between 30.0 and 53.7 feet below ground surface (ft bgs). Table 1 presents the coordinates, elevation and termination depths of Borings B-1 and B-2.

Boring ID	Coord Proj	dinates – UTM, posed	Zone 17S, NA As-F	Ground Surface Elev. WGS84	Final Depth	
	Latitude	Longitude	Latitude	Longitude	(MSL- ft)	(ft)
B-1 (MP 123.1)	38.28891103	-79.18890255	38.28885	-79.18895	2,023	30.0
B-2 (MP 123.1)	38.28914881	-79.18969272	38.28911	-79.18964	1,966	53.7

Table 1: Coordinates of Boring Locations

The borings were advanced by Horn and Associates of Winchester, Kentucky utilizing a lightweight rubber track mounted Diedrich D-50 drill rig. Borings were drilled using a combination of 8-inch hollow-stem auger (HSA) and core drilling (NX) methods. During HSA drilling, drive samples were collected at approximately 30-inch intervals using a 2.5-inch diameter, 24-inch

GWNF Geotechnical Investigation MP 123.1_20170530_F engineers | scientists | innovators

long Standard Penetration Test (SPT) sampler to facilitate lithologic logging and sample collection for geotechnical laboratory testing. SPT sampling was performed through the entire overburden material profile and into underlying bedrock, to the extent practical.

Following auger or SPT refusal, or upon encountering competent formation (bedrock) material, the investigations switched to core drilling methods until the borehole was advanced approximately 15 feet into bedrock. The core drilling process required circulation of water mixed with a naturally occurring bentonite based drilling fluid additive to regulate the temperature of the core bit, to carry cuttings to the surface, and to promote borehole stability. During the coring process, drilling fluid was pumped through the drill rods and past the bit before returning to the surface with cuttings through the annular space between the drill rods and the wall of the boring. At the surface, the fluid and cuttings were discharged into a baffled sump tank to allow the cuttings to fall out prior to recirculating the drilling fluid back down the borehole. Water required for this process was purchased from the City of Staunton, Virginia and hauled to the drilling sites and stored in 1,000 gallon tanks staged at the drilling locations.

The soil sample descriptions were logged by a Geosyntec Geologist in accordance with ASTM D2488. Additionally, recovered cores were logged to record structural orientation and discontinuities. Upon completion of logging, the cores were photographed (Appendix B) and retained in core boxes for subsequent sample selection and/or archiving. Table 2 summarizes the length of each boring, depth to top of bedrock, and the length of rock coring.

Boring ID	Boring Depth (ft)	Depth to top of Weathered Bedrock (ft)	Depth to top of Bedrock (ft)	Length of Rock Coring (ft)
B-1 (MP 123.1)	30.0	12.0	15.0	15.0
B-2 (MP 123.1)	53.7	17.0	38.7	15.0

Table 2: Soil Thickness, Length of Rock Coring and Boring Penetration Depths

Geotechnical Instrumentation

Following completion of the core drilling and evaluation of the subsurface conditions, boreholes were selected for instrumentation consisting of either a standpipe piezometer to monitor groundwater levels, or an inclinometer to record potential slope movement over time.

Piezometer

One temporary standpipe piezometer was installed in exploratory Boring B-2 at the GWNF MP 123.1 investigation site. The piezometer consisted of a 2-inch diameter PVC pipe, installed after

drilling and prior to auger withdrawal, with a 10 ft section of 0.010-inch slotted screen (screened interval) placed at the overburden material and bedrock interface. The annular space around the screened interval was backfilled with a permeable filter pack generally consisting of coarsegrained sand. A 2-foot bentonite seal was placed at the top of the filter pack, and the remainder of the annular space was backfilled with bentonite-cement grout to prevent conveyance of surface water into the ground. Standpipe piezometer construction logs for the piezometer installed at Boring B-2 are provided in Appendix C and summarized in Table 3a.

Depth to groundwater within the Boring B-2 temporary standpipe piezometer was measured at 13.6 ft bgs on 2 April 2017 approximately 96 hours after drilling. A subsequent groundwater level survey was performed on 20 April 2017 and depth to groundwater was recorded at 12.78 ft bgs. This subsequent measurement is considered to represent relatively stabilized levels, however, the subsurface materials at the site generally exhibits a relatively high percentage of silt and clay sized materials, which reduce permeability. It is possible that the observed groundwater levels in the temporary piezometers may not represent fully stabilized groundwater conditions due to the time rate of travel of groundwater through these materials. A summary of the standpipe piezometer data is provided below in Table 3a and presented graphically in Figure 2.

Piezometer ID	Boring Depth (ft)	Depth to top of Bedrock (ft)	Depth to Groundwater ¹ (ft bgs)	Depth to Top of Screen (ft)	Screen Length (ft)	Depth to Bentonite Seal (ft)
B-2 (MP 123.1)	53.7	38.7	12.78	33.7	10	4.0

 Table 3a:
 Standpipe Piezometer Construction

Notes:

1 - Depth to groundwater measured on 20 April 2017.

The surface completion for the piezometer included a locked surface monument to provide access for periodic groundwater level measurements, as well as to be used as a benchmark for subsequent level surveys. The temporary standpipe piezometer is anticipated to be monitored through pipeline construction, if deemed necessary. Upon completion of monitoring, the PVC piezometer should be cutoff below the ground surface and backfilled with bentonite-cement grout.

Inclinometer

One inclinometer was installed in exploratory Boring B-1 at the GWNF MP 123.1 geohazard site to monitor the absence or the presence of progressive slope movement that may be imperceptible

to the eye. Inclinometer casing consisted of 2.75-inch diameter acrylonitrile butadiene styrene (ABS) plastic. The bottom of the inclinometer casing was installed at 30.0 ft bgs. The annular space between the wall of the boring and the inclinometer casing was backfilled with a lean cement grout mixture from the bottom up using a tremmie pipe. Construction logs for the inclinometer installed at GWNF MP 123.1 are provided in Appendix C and summarized in Table 3b.

Following instrumentation installation, an initial baseline survey (i.e., zero reading) was performed on 20 April 2017. The grouted-in inclinometer was allowed 21 days to set prior to conducting the baseline reading. A summary of the inclinometer survey data is described below in Table 3b and presented in graphically in Figure 3.

Table 3b: Installation Depth of Inclinome	eter
---	------

Inclinometer ID	Boring Depth (ft)	Depth of Inclinometer Casing (ft)	Depth to Top of Bedrock (ft)	Length of Stickup above Ground Surface (ft)
B-1 (GWMF MP 123.1)	30.0	30.0	15.0	3.8

The surface completion for the inclinometer included a locked surface monument to provide access for periodic monitoring as well as to be used as a benchmark for subsequent level surveys. The inclinometer is expected to be monitored through construction if deemed necessary. Upon completion of monitoring, the inclinometer casing will be cut off below the ground surface and will be backfilled with bentonite-cement grout.

SITE CONDITIONS

Knowledge of the site conditions was developed from a review of regional geologic conditions and our findings from explorations performed for this investigation.

Geologic Setting

The GWNF MP 123.1 geohazard site lies within the central Valley and Ridge physiographic province of northwestern Virginia. The Valley and Ridge province is characterized by linear northeast-southwest trending ridges and valleys resulting from differential erosion of Paleozoic continental shelf and platform strata that has been deformed into a series of elongate macroscale folds and imbricate southeast-dipping thrust faults. Deformation disrupts strata as young as Late Carboniferous, and is the product of the Carboniferous-Permian Alleghanian orogeny, which was the result of the collision between Africa and North America during the formation of the supercontinent Pangea.

Surface Conditions

The GWNF MP 123.1 site is located approximately 2.3 miles east of Stover Shop Road (Route 728) and was accessed along an existing USFS logging road along the proposed AP-1 Segment, where the alignment extends up a steep northwestern facing slope towards Little North Mountain. The surface morphology along the proposed alignment is characterized by moderate to steep sloping terrain (30% to 58% inclination) with hummocky unconsolidated materials and moderate tree growth distortion observed at the surface. Hummocky topography observed at the site consisted of an assemblage of irregular mounds of limestone talus derived from a resistant cliff band upslope of the site, and colluvial hollows that were rounded or irregular in cross-profile. The natural hillsides along the proposed alignment are covered by moderate growth of low lying grasses, shrubs, and deciduous woodlands. Additionally, several below ground utility lines were identified along Hanky Mountain Highway (Highway 250), but do not traverse the geotechnical investigation site area.

The elevation at Boring B-2 is approximately 1,966 above feet above mean sea level (ft msl) sloping upwards towards the southeast along the proposed pipeline alignment. The elevation at Boring B-1 is approximately 2,023 ft msl, also sloping upwards towards Little North Mountain at MP 123.2 (southeast). The maximum elevation of Little North Mountain along the proposed alignment is approximately 2,345 ft msl. The latitude and longitude of the GWNF MP 123.1 borings were acquired during the drilling investigation using a hand-held global positioning (GPS) device. Boring elevations were obtained by plotting those coordinates on a topographical map for the areas.

Subsurface Conditions

The subsurface conditions at MP 123.1 consist of surficial colluvium/talus and landslide deposits generally comprised of yellowish brown-to-brown, lean clay and silt with sporadic limestone and sandstone gravels, cobbles, and boulders overlying bedrock of the Devonian to Silurian-age Formations (undivided). Thickness of the colluvium/talus and landslide deposits observed in the borings at the GWNF MP 123.1 site ranged from 12.0 ft (Boring B-1) and 17.0 ft (Boring B-2), increasing in thickness downslope. The identified colluvium/talus and landslide deposits were characterized by the surficial hummocks and boulders observed in each of the two borings indicating evidence of a potential historical slope failure and episodic debris flows.

Bedrock of the Devonian to Silurian-age Formations (undivided) observed in the borings at GWNF MP 123.1 consist of dark gray-to-gray and black shale. Recovered rock cores were generally massively bedded and closely fractured (30° to 70° fracture angles). Recovered cores were also variably weathered consisting of iron oxidation infilling along the fracture planes. A generalized geologic cross section along the slope profile is presented in Figure 1. Due to the high angle bedding at this location and localized fracture frequency, several sections of the

recovered cores exhibited abnormally high fracture intensity as a result of the coring process and the rock quality designation (RQD) could not be accurately determined. Where the RQD could be determined in less fractured material, the RQD was generally poor to good ranging from 71% to 88% (B-1) and 28% to 43% (B-2). Detailed logs of the two borings advanced at the GWNF MP 123.1 site, as well as a key sheet, are presented in Appendix D.

On 1 December 2016, Draper Aden Associates (Draper) conducted a seismic refraction study³ at the GWNF MP 123.1 investigation site (Appendix E). The objective of the survey was to determine depth to bedrock at soil test pits excavated during the completion of an Order 1 Soil Survey where bedrock was not encountered within the protocol depth of 50-inches below ground surface. Data from the seismic refraction profile conducted at the GWNF MP 123.1 investigation site (test pit ID GWNF-R012-161201) suggest depth to weathered bedrock and bedrock is at 8.3 ft bgs and 8.1 ft bgs, respectively. The shallower depths to weathered bedrock and bedrock suggested by the seismic refraction study likely represent the talus material shed from the adjacent ridge and is generally consistent with the conditions encountered during this geotechnical drilling investigation. The approximate location of the three seismic refraction surveys performed near the GWNF MP 123.1 investigation site is presented on Figure 1.

Subsurface conditions observed in the borings at the GWNF MP 123.1 geohazard site along the with the surface morphology features (i.e., moderate to steep sloping terrain, tree growth distortion, and surficial hummocks) suggest the site experienced previous slope failure and subsequent episodic slope instability within the colluvial/talus deposits and highly weathered bedrock material. However, no evidence of recent active failure such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation.

LABORATORY TESTING

Geotechnical Laboratory Testing Program

Geosyntec contracted Geotechnics, Inc. (Geotechnics) of East Pittsburgh, Pennsylvania to conduct laboratory testing assigned by Geosyntec on selected soil samples and rock cores to evaluate the pertinent geotechnical index properties. The laboratory testing program, on soil samples, was primarily focused on soil classification and index testing. Testing on select rock cores was focused compressive strength. The laboratory testing program consisted of:

³ Draper Arden Associates, 2017. "Atlantic Coast Pipeline – Seismic Refraction Study, George Washington National Forest and Monongahela Nation Forest, Virginia and West Virginia", submitted to Geosyntec Consultants dated 10 March 2017.

Soil Samples

- Water content tests per ASTM D2216;
- Atterberg limit tests per ASTM D4318;
- Sieve analysis tests per ASTM D422; and
- Hydrometer tests per ASTM D422.

Rock Cores

• Unconfined compressive strength test per ASTM D7012-Method C.

Table 4 summarizes the number and types of laboratory testing conducted on soil and rock samples from the GWNF MP 123.1 geohazard site.

	Number of Tests				
Types of Laboratory Tests	B-1 (MP 123.1)	B-2 (MP 123.1)			
Water Content	6	12			
Atterberg Limits	1	5			
Sieve Analysis	2	4			
Hydrometer Test	0	2			
Rock Unconfined Compressive Strength	2	2			

Table 4: Number and Types of Laboratory Tests

Laboratory Test Results

The laboratory test results are also plotted in the corresponding boring logs (Appendix D), and the individual test results are presented in detail in Appendix E.

Soil Testing

Given the granular nature of the soils from GWNF MP 123.1, select samples were tested for grain-size distribution to quantify gravels, sands and fines. The results show that the soils consist of poorly graded gravel with silt and sand (GP-GM) and clayey sand with gravel (SC), and fines downward consisting of silt with sand (ML) and sandy lean clay (CL) with gravel.

The laboratory soil testing performed for the GWNF MP 123.1 borings included water content and Atterberg limits measured on selected lean clay and silt samples and grain–size analysis to quantify the percentages of gravel, sand and fines, particularly on samples containing coarser

grained material. Table 5 presents a summary of the laboratory test results conducted on soil samples.

Boring ID	Sample ID	Depth	Water Content	Percent of Gravel (1)	Percent of Fines (2)	Liquid Limit	Plastic Limit	Plasticity Index
		(ft)	(%)	(%)	(%)	(%)	(%)	(%)
B-1	B-1-1	0.4	7.3	-	-	-	-	-
B-1	B-1-2	2.9	6.5	63.1	10.14	-	-	-
B-1	B-1-3	5.6	8.6	-	-	-	-	-
B-1	B-1-4	8.2	28.0	-	-	-	-	-
B-1	B-1-5	11.2	28.7	10.3	77.8	35	26	9
B-1	B-1-6	14.0	30.1	-	-	-	-	-
B-2	B-2-1	1.0	18.3	-	-	-	-	-
B-2	B-2-2	3.0	12.0	-	-	-	-	-
B-2	B-2-3	5.5	12.8	-	-	-	-	-
B-2	B-2-4	8.2	9.6	26.9	39.0	29	18	11
B-2	B-2-5	10.8	12.4	15.0	57.8	28	19	9
B-2	B-2-6	13.1	7.4	-	-	-	-	-
B-2	B-2-7	16.0	8.4	-	-	-	-	-
B-2	B-2-8	22.0	20.2	-	-	35	19	16
B-2	B-2-9	23.8	10.8	-	-	-	-	-
B-2	B-2-10	27.5	19.1	4.8	66.4	37	21	16
B-2	B-2-11	31.8	16.8	12.4	45.9	37	20	17
B-2	B-2-12	34.3	18.5	-	-	-	-	-

Table 5: Summary of Laboratory Test Results on Soil Samples

Notes:

1 - Retained #4 sieve.

2 - Passing #200 sieve.

"-" Not analyzed

Rock Core Testing

A summary of laboratory test results conducted on rock samples is presented in Table 6.

Boring ID	Core ID	Sample Interval (ft)	Unit Weight (pcf)	Uniaxial Compres. Strength (psi)
B-1	R-1	15.7-16.5	160.6	4,320
B-1	R-3	25.3-26.0	161.6	5,890
B-2	R-1	41.6-42.2	145.8	620
B-2	R-3	49.2-50.0	148.4	940

Table 6: Summary of Laboratory Test Results on Rock Samples

Summary of Laboratory Testing

The geotechnical laboratory test results indicate that water content of colluvial/talus deposits varied between 6.5% to 30.1% (Boring B-1) and 7.4% to 20.2% (Boring B-2), and showed a decreasing trend with depth. The Atterberg test results show that the colluvial/talus deposits contain a plasticity index (PI) of 9 to 17 and the soil unit is mainly within the low plasticity clay zone (i.e., CL). The PI is generally constant with depth within the low plasticity clay soil unit.

The unconfined compressive strength of the recovered rock cores ranged from 4,320 to 5,890 pounds per square inch (psi) in cores from Boring B-1, and 620 to 940 psi in cores from Boring B-2.

SUMMARY OF FINDINGS

Surficial morphologic features observed during our Phase 2 reconnaissance along with subsurface conditions recorded during the geotechnical drilling investigation at the GWNF AP-1 MP 123.1 geohazard site suggest the site has experienced previous shallow seated slope movement in the form of episodic colluvial and talus debris migration downslope along the proposed ACP alignment. The approximate limit of mapped instability is presented in Figure 1. Although no evidence of recent or active slope movement such as ground cracks, recent scarps, or exposed earth was observed at the time of our investigation, data collected during subsequent inclinometer monitoring events will be used to supplement and inform site-specific engineering evaluations, and recommendations for mitigation measures should future potential instability be identified. An addendum to this data summary report will be issued as subsequent monitoring data is collected.

As a consequence of these findings, and a subsequent engineering analysis of slope stability, reported separately, a site-specific geotechnical hazard mitigation design has been developed for this slope which incorporates:

- restrictions on material stockpiling during construction grading;
- targeted drainage measures along the trench;
- use of deformable backfill around the installed pipeline; and,
- recommendations for post construction monitoring.

CLOSING

Geosyntec appreciates the opportunity to provide Dominion Transmission, Inc. with this data summary report, and we look forward to working together on this important project. If you have any questions or require additional information, please contact Logan Brant (lbrant@geosyntec.com, 281.810.5056) Jared Warner (jwarner@geosyntec.com, or 858.716.2885)

Sincerely,

Geosyntec Consultants,

Logan Brant, Ph.D., P.E. (VA) Senior Geotechnical Engineer

Jaren Warnen

Jared Warner, P.G. Project Geologist

Attachments:

Figures

- Figure 1 Site Plan and Generalized Geologic Profile
- Figure 2 Piezometer Survey Data
- Figure 3 Inclinometer Survey Data

Appendices

Appendix A – Photographic Log Appendix B – Core Photographs Appendix C – Piezometer and Inclinometer Construction Logs Appendix D – Logs of Borings B-1 and B-2 Appendix E – Laboratory Test Results

GWNF Geotechnical Investigation MP 123.1_20170530_F

engineers | scientists | innovators

FIGURES

Notes: Precipitation data obtained from weather station located in Staunton, Virginia. Reference: <u>www.wunderground.com</u>

Piezometer Survey Data (Boring B-2)

Project: ACP GWNF MP 123.1 Location: Augusta County, Virginia Project Number: TXG0007-012-6303 Client: Dominion Transmission, Inc.

Inclinometer Survey Data (Boring B-1)

Project: ACP GWNF MP 123.1 Location: Augusta County, Virginia Project Number: TXG0007-012-6303 Client: Dominion Transmission, Inc.

APPENDIX A PHOTOGRAPHIC LOG

APPENDIX A - PHOTGRAPHIC LOG ACP Geotechnical Investigation GWNF MP 123.1 Drilling Site 27 March through 4 April 2017

Geosyntec[▶]

Geosyntec[▶]

TXG0007-012-6303

Geosyntec[▶]

Geosyntec[▷]

Geosyntec[▶]

APPENDIX B CORE PHOTOGRAPHS
Geosyntec[▷]

consultants

APPENDIX B - CORE PHOTOS

PROJECT NAME: ACP GWNF MP 123.1

CLIENT: DOMINION TRANSMISSION, INC.

PROJECT NO.: TXG0007-012-6303 LOCATION: AUGUSTA COUNTY, VIRGINIA

GWNF MP 123.1 Boring B-1: Box 1 of 1 (15.0 to 30.0 ft bgs)

GWNF MP 123.1 Boring B-2: Box 1 of 1 (38.7 to 53.7 ft bgs)

APPENDIX C

PIEZOMETER AND INCLINOMETER CONSTRUCTION LOGS

Geosyntec⊳

consultants

Appendix C - Piezometer Construction Log

Site: Atlantic Coast Pipeline	Date: 30-Mar-17
Well ID: B-2 (MP 123.1)	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 54.3
Drillers: Tim Jenkins	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Well Depth: 53.7'
	Well Diameter: 2"
Top of	W-11 Construction
Casing 3.25'	Well Construction:
	Material: <u>SCH 80 PVC</u>
Ground Elev.	
	Screen Slot Size: 0.01°
	Screen Beg.: <u>19.7</u> End: <u>29.7</u>
	Sump Y / N
	Type/Length: <u>PVC End Cap (0.3")</u>
	Filter Pack:
	Type/Brand: Global Drilling #5 Quartz Sand
	Amount Used: <u>I 501b bag</u>
	Placement Method: I remie
Top of Seal 4' Seal Length	Seal:
2'	Type/Brand: Cetco 1/4" Bentonite Pellets
Seal Bottom 6'	Amount Used: 1 50lb bucket
27.7'	Vol. Fluid Added: NA
Screen 33.7' Sand Above	Set-up Time: Overnight
	Placement Method: Poured
	Type I/II Portland Cement/PureGold
	Type/Brand: Gel Bentonite
Screen	1 94lb bag of Portland + 50lb bag
	Vol. Elvid Addad: ~ c60 gallons H-O
	Discomment Methods
Filter Pack	Well Completion
	Above Crede / Below Crede
	Cuard Dests? V / N
Screen	
Bottom 43./	Pad Size: IV/A
	Cover Type/Size: Protective Cover (4.5)
Well Depth 53.7	Comments:
Boring Depth 53.7	<u> </u>
Well Diam.	
$\underbrace{Geolog}_{8"/2 16"}$	gist Signature: Jared Warner
Borehole Diam.	

Geosyntec Consultants

Inclinometer Construction Log

Site: Atlantic Coast Pipeline	Date: 30-Mar-17
Boring ID: B-1 (MP 123.1	Drilling Method: Hollow-Stem Auger (8")/Rock Core (2.16")
Drilling Company: Horn and Associates	Boring Depth: 30.0'
Drillers: Tim Jenkins	Boring Diameter: 8"/2.16"
Geologist: Jared Warner	Inclin. Depth: 30.0'
	Inclin. Diameter: 2.75"
Top of	Well Construction:
Casing 3.8'	Material: ABS Plastic (Ouick Connect)
	Inside Diamter: 2.32"
Ground Elev. 0	Screen Slot Size: N/A
	Screen Beg.: N/A End: N/A
	Sump Y / N
	Type/Length:
N/A	Filter Pack:
	Type/Brand: N/A
	Amount Used: N/A
	Placement Method: N/A
	Seal:
Top of Seal N/A Seal Length	Type/Brand: N/A
	Amount Used: N/A
Seal Bottom IN/A	Vol. Fluid Added: N/A
Top of Sand Above	Set-up Time: N/A
Screen IV/A Screen	Placement Method: N/A
	Grout:
	Type I/II Portland Cement/PureGold
Screen	1 94lb bag of Portland + 25lb bag
Length	Amount Used: bentonite
N/A	Vol. Fluid Added: \sim 30 gallons H ₂ O
Filter Pack	Placement Method: Tremie
Length	Inclin. Completion:
N/A	Above Grade / Below Grade
Screen	Guard Posts? Y / N
Bottom N/A Sump Length	Pad Size: N/A
	Cover Type/Size: Locked Cover (4.5')
Inclin. Depth 30.0'	Comments: Inclinometer casing set at 30.0 ft bgs and
	grouted to surface.
Boring Depth 30 2 75"	
Inclin. Diam.	
Geolo	ogist Signature: Jared Warner
<u>8"/2.10"</u> Borehole Diam	

APPENDIX D

LOG OF BORINGS B-1 AND B-2

Geosyntec[▷]

consultants

engineers | scientists | innovators

GPJ

DRILLING\ACPHDD

GEOTECHNICAL

RIDGE

JECTS/BLUE

P:\GINT\PRO

13:47

Ś

4/5/1

GEOSNTEC.GDT

GEOTECH

PROJECT ACP GWNF MP 123.1 GEOTECHNICAL INVESTIGATION **PROJECT LOCATION** AUGUSTA COUNTY, VIRGINIA

PROJECT NUMBER

TXG0007-012-6303

	Ge	20S coi	ad				JEC JEC BE	T R ON	MP 123.1 B-1 Atlantic Coast Pipeline TXG0007 Augusta County, VA	G	ROI) SU CAS	SHE RF. ING	ET 1	1 OF 2.9	2					
	G	S FORM : OIL-5910		APPENDIX D	BOF	RING	LO	G	<u>][</u>	FINI	SHI		LL DATE 3/30/2017	D.			-t at	ove	MSL	-		
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Na 2) Color 3) Moistur 4) Grain S 5) Percen	DES me (USCS re Size tage	SCRIPTION Plasticity Density/Consistency Other (Mineral Content Discoloration, etc.) 	GRAPHIC LOG	SAMPLE NO.	ТҮРЕ	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pd)	MOIST UNIT WEIGHT (pcf)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)	LIQUID LIMIT		
- 2- - 4- -	2020.	COLLUVI SILT AN brown, n fine to c to 1 inch Becomes sand and Becomes	UM: POOF ID SAND (C noist, medi parse limes i), rootlets. stiff, slight d coarse sa	RLY GRADED GRAVEL WITH SP-GM), dark yellowish um stiff, fine to medium sand, stone and sandstone gravel (up increase in medium to coarse andstone gravel, trace clay.		B-1-1 B-1-2 B-1-3		2 3 2 3 6 7	5 13 19	28 28 39			Hard drilling. Hard drilling. Auger sliding.			10.1			7.3 6.5 8.6			
6- - 8-	B-1-3 Becomes mottled dark brown and yellowish brown, very stiff, slight increase in clay content. B-1-3 SILT WITH SAND (ML), very dark brown, moist, very stiff, low plasticity. Slight increase in trace weathered shale gravel (up to 1 inch), gray clay lense (0.5 inch thick) at 10.7					Z	4 15 9 7 9	16	78	2.5 to 2.75								28				
10- - 12- - 14-	2010.	Slight incr to 1 inch ft bgs. Same as and yello	rease in tra), gray clay above, bec owish brow	ce weathered shale gravel (up / lense (0.5 inch thick) at 10.7 omes mottled very dark brown n.		B-1-5 B-1-6		7 7 9 3 7 14	16 21	78	2.25 to 2.75 1.5 to 2.5					77.8			28.7 30.1	35	26	9
- 16- - 18- -	 2005							50/1	50				Sampler refusal. Switch to rock coring at 15 ft bgs. Black shale fragments in spoon sampler.									
20- - 22- - 24-	2000	Refer to M	o MP 123.1 B-1 page 2.																			
26- - 28- - 30-													Termination depth at 30 ft									
	ontf Quipi Rill Ame Dgge	NTRACTOR Horn & Associates LATITUDE: 38.20 UIPMENT Diedrich D-50 LONGITUDE: -79.1 ULL MTHD. Hollow Stem Auger COORDINATE SYS METER 8 inches GGER Jared Warner REVIEWER Jared Warner								NOT	ES:	HEE	T FOR SYMBOLS AND ABBREVIA	TIONS	6							

			mtaal					BO	RIN	G	Μ	P	123.1 B-1			S	HEE	T 2 (OF 2	:]
'	Ut	COSY	LLUCC" aultante	11490 Westheimer F Houston Texas 7707	Road 7			PR(NU	DJE MBI	CT ER	Atl T>	anti KG0	c Coast Pipeline 007	GRO	UND	SUR	F. 2	022.	9	
				Tel: (281) 920-4601			\exists	LO ST/	CAT ART	DR	I Au	ugu: . DA	sta County, VA \TE 3/30/2017	TOP DATI	OF C JM F	ASIN t abc	IG ove N	ISL		
L	RO	CK-5910		ENDIX D - BORING	G LC	G		FIN	ISH	DR	ILL	DA	TE 3/30/2017							
(9)	(t)		DESCF	RIPTION	(7)				SAM			(COMMENTS		DIS		บทา	ry da	TA	
(ft-ba	NOI	1) Form 2) Rock	ation, Member	6) Weathering 7) Hardness	IC LO	. LOG	JMBER	TH (ft)	ERY (ft	ERY (%	D	1E (min		ш	DENSI	URE	FILLIN	. ТҮРЕ	RITY	jrees)
EPTH	EVAT	3) Color 4) Grair	n Size/Percentage	8) Cementation 9) Moisture	RAPH	WELL	RUN NI	LENG	RECOV	RECOVI	RC	UN TIN	2) Air Monitoring	TYP	CTURE	APERT	CTURE	NERAL	PLANA	JIP (deç
		5) Bedo	ling	10) Other (Mineralization, Discoloration, Odor, etc.)								Ľ.			FRAG		FRA	W		
	_2021 _	Refer to MP	123.1 B-1 page 1.																	
	_2020 _																			
	_2019 _																			
	_2018 _																			
5	_2017_																			
	_2016 _																			
	2014																			
	_2013 _																			
10	_2012_																			
	_2011 _																			
	_2010 _																			
	_2009 _																			
	_2008 _																			
15	_2007	LOWER DE	VONIAN AND SILUF): SHALE, very dark	RIAN FORMATIONS gray to black, massive, slightly			R-1	5	4.2	84	71	10	Begin rock coring at 15.0 ft bgs.							
	_2005 _	fractured (40 FeOx infilled	to 50 degrees fractu fractures (0.1 to 0.3	re sets), slightly weathered, inch).																
	_2004 _	No recovery. Same as abo	ove.																	
	_2003 _																			
20	_2002_						R-2	5	4.6	92	86	10								
	_2001 _																			
	_2000 _	Same as abo	ove.																	
	_1999 _																			
25	1997_]																		
5	_1996 _						R-3	5	5	100	88	8								
	_1995 _																			
	_1994 _																			
0.04	_1993 _												Termination depth at 30 ft							
30 (_h992	38.28] 885	י הר	I NO	 TES	:			bgs.										
	EQUIPN	MENT D	Viedrich D-50		-79.18	3895 EM·		-	2											
			IX ared Werr		. 	<u> </u>														
Ľ	JUGGE	κ J	areo warner	REVIEWER Jared Warn	er			SEE	KEY	SHE	ETF	OR	SYMBOLS AND ABBREVIATI	ONS						

		eon con	ntec sultants Tel: (281	ad			BOR PRO NUN LOC	JEC JEC IBE	R ON	MP 123.1 B-2 Atlantic Coast Pipeline TXG0007 Augusta County, VA	GI T(ROI OP (UND OF () SU CAS	SHE RF.	EET 196	1 OF 5.6	= 3			
	G: Si	S FORM : OIL-5910	APPENDIX D -	BOR	RING I	_0	G	׀ֺ <mark>ָ</mark>	STA FINI:	RT I SH [DRII DRII	L DATE 3/28/2017 L DATE 3/29/2017	D	ΑΤι	JM F	Ft ab	ove	MSL	-		
							SAM								ABC	RAT	ORY	' RES	ULT	S	
DEPTH BGS (ft)	ELEVATION (ft)	1) Soil Name 2) Color 3) Moisture 4) Grain Sizu 5) Percentaç	DESCRIPTION e (USCS) 6) Plasticity 7) Density/Consistency 8) Other (Mineral Content, e Discoloration, etc.) ge	GRAPHIC LOG	SAMPLE NO.	ТҮРЕ	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (tsf)	TORVANE (tsf)	COMMENTS 1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pcf)	MOIST UNIT WEIGHT (pcf)	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%)	MOISTURE CONTENT (%)			
2-		COLLUVIU (SC), light of fine to or (up to 1 inc Becomes s medium si	M: CLAYEY SAND WITH GRAVEL brown, moist, medium stiff, presence oarse limestone and sandstone gravel ch). stiff, increase in gravel and fine and and		B-2-1	Z	3 3 5	8	67	1.0 to 1.5								18.3			
4-			inu.		D-2-2		8		01	to 2.0											
6-	.1960	Becomes ve brown with	ery stiff, increase in gravelly silt, light ı FeOx staining.		B-2-3		4 7 11	18	67	1.0 to 2.5		Hard drilling.						12.8			
8-	8 – Becomes mottled light brown and yellowish brown with light gray limestone gravel (up to 2 inches), possible boulder.							30	78						39.0			9.6	29	18	11
10-	1955	SANDY LEA reddish brc inches), ha	AN CLAY WITH GRAVEL (CL), dark own sandstone gravel (up to 0.5 ard.		B-2-5		14 22 25	47	83			Rig chatter.			57.8			12.4	28	19	9
12-		Same as ab gravel (up t ft bgs.	ove with white to light gray limestone to 1.5 inches), possible boulder at 12.5		B-2-6	Z	23 31 50	81	88			Rig chatter.						7.4			
14-	1950	Increase in c	coarse gravel (up to 1.5 inches).		B-2-7	$\left \right $	23 24 38	62	100									8.4			
16-		Possible lim no recover	iestone or sandstone boulder (2.5 feet), y.									Auger refusal at 16 ft bgs. Switch to rock coring. Possible weathered bedrock.									
20-	 1945	LEAN CLAY brown to liç coarse gra	/ WITH GRAVEL (CL), yellowish ght brown, moist, very stiff, fine to ivel, low to medium plasticity,									Switch to hollow stem auger at 18.5 ft bgs due to softer material.									
22-					B-2-8	$\left \right $	9 9 12	21	67									20.2	35	19	16
24-	- - - 1940_	Same as ab gravels (up	ove, increase in coarse limestone o to 2 inches).		B-2-9		13 24 20	44	22									10.8			
26 - 28 -		SANDY LEA brown with plasticity, v fragments. Possible sa	AN CLAY (CL), Light gray to yellowish FeOx staining, moist, medium weathered siltstone and sandstone		B-2-10		6 9 12	21	1.5	1.75 to 2.5		Hard drilling. Auger refusal at 27.9 ft bgs. Switch to rock coring.			66.4			19.1	37	21	16
30- C(E(D) D) L(J1935 DNTR QUIPI RILL AME OGGI	ACTOR H AENT D MTHD. H TER 8 ER J	Ireddish brown, no recovery. Jenn & Associates L/ Diedrich D-50 L(Hollow Stem Auger Cr B inches Jared Warner)11 964 E M:		 NOTI	ES:	SHEE	T FOR SYMBOLS AND ABBREVIA			<u> </u>			<u> </u>						

		11490 Westheimer R								BOR PRO	ING JEC	T.	MP 123.1 B-2 Atlantic Coast Pipeline					SHE	EET	2 01	= 3	
		coi	nsultants	11490 We Houston T Tel: (281)	stheim exas 7 920-4	ier Roa 7077 601	Id			NUM LOC STA	IBE ATI RT I	r on Drii	TXG0007 Augusta County, VA L L DATE 3/28/2017	G T D	RO OP (ATL	und Of C Jm F	SU CAS T at	RF. ING	196 MSL	5.6 -		
	G S	S FORM: OIL-5910		DIX D - I	BOR	ING L	-0	G	JL	FINIS	SHI	DRIL	L DATE 3/29/2017									J
_ 	t)		DESCRIPTION					SAMF	PLE		G		COMMENTS		۲ ع	ABO	RAT	ORY	۲RES ®		S ERBE	RG
DEPTH BGS (f	ELEVATION (f	1) Soil Na 2) Color 3) Moistur 4) Grain S 5) Percen	me (USCS) 6) Plasticity 7) Density/Cc e 8) Other (Min ize Discolorati tage	onsistency neral Content, ion, etc.)	GRAPHIC LOC	SAMPLE NO.	ТҮРЕ	BLOWS PER 6"	N VALUE	RECOVERY (%)	POCKET PEN (ts	TORVANE (tsf)	1) Rig Behavior 2) Air Monitoring	DRY UNIT WEIGHT (pc	MOIST UNIT WEIGHT (p	PERCENT FINES (%)	PERCENT SAND (%)	PERCENT GRAVEL (%	MOISTURE CONTENT ("	רוסחום רושוב	PLASTIC LIMIT	PLASTICITY INDEX
- - 32-		CLAYEY yellowis stiff, hig limestor	SAND (SC), mottled brown a h brown with FeOx staining, r n plasticity, fine to coarse sar e gravel (up to 1 inch).	and moist, very ndstone and		B-2-11	7	6 7 8	15	55			Driller indicates softer material. Switch to hollow stem auger at 30.4 ft bgs.			45.9			16.8	37	20	17
34 - -	- 193 <u>0</u>	Becomes gravel, s inch), po	Becomes dark gray to black, slight increase in gravel, sandstone and limestone gravel (up to 1 inch), possible boulder at 35 ft bgs. No recovery.				7	5 6 11	17	55	2.0 to 2.5		Hard drilling.						18.5			
36- - 38-		No recovery. B-2-1 No recovery. Dark gray shale fragments observed in the spoon. B-2-1				B-2-13	7	5 3 4	7	0			Sample fell out of spoon sampler. No recovery.									
- - 40-	.1925	No recove	ery. Dark gray shale fragment oon.	ts observed		B-2-14		50/2	50	0			Sampler refusal. Switch to rock core at 38.7 ft bgs.									
- 42-																						
44 -	- 1920																					
46 - - 48 -		Refer to N	IP 123.1 B-2 page 3.																			
- 50-	191 <u>5</u>																					
- 52 -	-																					
54 - - 56 -	1910.																					
- 58-	8																					
60-	1905	1																				
	- -										ES:	SHEE	T FOR SYMBOLS AND ABBREVIA	TION	S							

			toc	>					BOI		G	M	P	123.1 B-2			s	HEE	Т 3 (OF 3	•]
	GS			11490 \ Houstor Tel: (28	Westheimer R n Texas 7707 31) 920-4601	Road 7)G			MBE CAT ART		T) T) N Au RILL	GO Jgu: DA DA	007 sta County, VA TE 3/28/2017 TE 3/29/2017	GRO TOP DATU	UND OF C JM F	SUR ASIN t abc	F. 1 IG ove M	965.0 ISL	6	
\vdash	RO	CK-5910			Bortint											DIE		-1511 117		T A	
DEPTH (ft-bgs)	ELEVATION (ft)	1) Formation 2) Rock Nar 3) Color 4) Grain Siz 5) Bedding	DESCF n, Member ne e/Percentage	RIPTION 6) Weatherin 7) Hardness 8) Cementatio 9) Moisture 10) Other (Mi Discolora	g on neralization, tion, Odor, etc.)	GRAPHIC LOG	MELL LOG	RUN NUMBER	LENGTH (ft)	RECOVERY (ft)	RECOVERY (%)	RQD	RUN TIME (min.)	COMMENTS 1) Rig Behavior 2) Air Monitoring	ТҮРЕ		APERTURE			PLANARITY	DIP (degrees)
- - - 35- - -	1934 _ 1933 _ 1932 _ 1931 _ 1930 _ 1929 _ 1928 _ 1927 _	134																			
 40 - -	1926 _ 1925 _ 1924 _ 1923 _ 1922 _	B _						R-1	5	3.5	70	40	8	Begin rock coring at 38.7 ft bgs.							
- 45 - -	.1921 _ .1920 _ .1919 _ .1918 _	 Becomes slightly fractured at 40.6 ft bgs (30 degree fractures) at 0.5 to 0.9 inch spacing, 70 degree clay infilled fracture, soft/smooth. No recovery. Same as above. 30 degrees fractures with 2 to 3 inches spacing, soft/smooth. No recovery. 						R-2	5	3.6	72	43	13								
- - 50 – -	.1917 _ .1916 _ .1915 _ .1914 _	Becomes slightly 0.5 to 0.9 inch sp fracture, soft/smc High angle fractu	fractured at 40 acing, presence both. res (50 to 60 de	.6 ft bgs (30 degr e of 70 degree cla earees).	ee fractures) at ay infilled			R-3	5	4.4	88	28	13								
- - - 55 -	-1914 _ -1913 _ -1912 _ -1911 _ -1910 _ -1910 _ -1909 _ -1908 _													Termination depth at 53.7 ft bgs.							
- - 60-	1908 _ 1907 _ 1906 _ 1905	ACTOR Horn	& Associate	25	LATITUDE:	38.28	911			ES											
EC DF DI LC	QUIPN RILL N AMET DGGE	MENT Died MTHD. Rock MER NX R Jarea	-79.18 SYST	3964 EM :		SEE	KEY	She	ET F	ORS	SYMBOLS AND ABBREVIATIO	DNS									

APPENDIX E

LABORATORY TEST RESULTS

May 17, 2017

Project No. 2017-241-002

Logan Brant Geosyntec Consultants, Inc. 11490 Westheimer Rd., Suite 150 Houston, TX 77077

<u>Transmittal</u> Laboratory Test Results <u>ACP TXG0007</u>

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted, *Geotechnics, Inc*.

David R. Backstrom Laboratory Director

We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

LAB ID	Boring	Depth	Sample Number	Water Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	USCS Symbol (Limits)	Passing #200%	Passing 0.002 mm %	USCS Symbol (Grain Size)	USCS Classification	UC Rock Peak Strength (psi)
2017-241-002-001	B-1(MP123.1)	0.4	B-1-1	7.3	-	-	-	-	-	-	-	-	-
2017-241-002-002	B-1(MP123.1)	2.9	B-1-2	6.5	-	-	-	-	10.14	-	gp-gm, assumed	POORLY GRADED GRAVEL WITH SILT AND SAND	-
2017-241-002-003	B-1(MP123.1)	5.6	B-1-3	8.6	-	-	-	-	-	-	-	-	-
2017-241-002-004	B-1(MP123.1)	8.2	B-1-4	28	-	-	-	-	-	-	-	-	-
2017-241-002-005	B-1(MP123.1)	11.2	B-1-5	28.7	35	26	9	ML	77.84	-	ML	SILT WITH SAND	-
2017-241-002-006	B-1(MP123.1)	14	B-1-6	30.1	-	-	-	-	-	-	-	-	-
2017-241-002-007	B-1(MP123.1)	15.7-16.5	R1	-	-	-	-	-	-	-	-	-	4,320
2017-241-002-008	B-1(MP123.1)	25.3-26.0	R3	-	-	-	-	-	-	-	-	-	5,890
2017-241-002-009	B-2(MP123.1)	1	B-2-1	18.3	-	-	-	-	-	-	-	-	-
2017-241-002-010	B-2(MP123.1)	3	B-2-2	12	-	-	-	-	-	-	-	-	-
2017-241-002-011	B-2(MP123.1)	5.5	B-2-3	12.8	-	-	-	-	-	-	-	-	-
2017-241-002-012	B-2(MP123.1)	8.2	B-2-4	9.6	29	18	11	CL	39.03	-	SC	CLAYEY SAND WITH GRAVEL	-
2017-241-002-013	B-2(MP123.1)	10.8	B-2-5	12.4	28	19	9	CL	57.81	-	CL	SANDY LEAN CLAY WITH GRAVEL	-
2017-241-002-014	B-2(MP123.1)	13.1	B-2-6	7.4	-	-	-	-	-	-	-	-	-
2017-241-002-015	B-2(MP123.1)	16	B-2-7	8.4	-	-	-	-	-	-	-	-	-
2017-241-002-016	B-2(MP123.1)	22	B-2-8	20.2	35	19	16	CL	-	-	-	-	-
2017-241-002-017	B-2(MP123.1)	23.8	B-2-9	10.8	-	-	-	-	-	-	-	-	-
2017-241-002-018	B-2(MP123.1)	27.5	B-2-10	19.1	37	21	16	CL	66.4	32.32	CL	SANDY LEAN CLAY	-

LAB ID	Boring	Depth	Sample Number	Water Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	USCS Symbol (Limits)	Passing #200%	Passing 0.002 mm %	USCS Symbol (Grain Size)	USCS Classification	UC Rock Peak Strength (psi)
2017-241-002-019	B-2(MP123.1)	31.8	B-2-11	16.8	37	20	17	CL	45.86	24.84	SC	CLAYEY SAND	-
2017-241-002-020	B-2(MP123.1)	34.3	B-2-12	18.5	-	-	-	-	-	-	-	-	-
2017-241-002-021	B-2(MP123.1)	41.6-42.2	R1	-	-	-	-	-	-	-	-	-	620
2017-241-002-022	B-2(MP123.1)	49.2-50.0	R3	-	-	-	-	-	-	-	-	-	940

MOISTURE CONTENT

ASTM D 2216-10

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2017-241-002

Lab ID:	001	002	003	004	005
Boring No.:	B-1(MP123.1)	B-1(MP123.1)	B-1(MP123.1)	B-1(MP123.1)	B-1(MP123.1)
Depth (ft):	0.4	2.9	5.6	8.2	11.2
Sample No.:	B-1-1	B-1-2	B-1-3	B-1-4	B-1-5
Tare Number	48	1423	31	18	16
Wt. of Tare & Wet Sample (g)	181.40	395.94	109.25	83.61	76.65
Wt. of Tare & Dry Sample (g)	169.53	380.57	101.11	66.85	61.12
Weight of Tare (g)	6.81	143.44	6.90	6.97	6.98
Weight of Water (g)	11.87	15.37	8.14	16.76	15.53
Weight of Dry Sample (g)	162.72	237.13	94.21	59.88	54.14
Water Content (%)	7.3	6.5	8.6	28.0	28.7

Lab ID	006	009	010	011	012
Boring No.	B-1(MP123.1)	B-2(MP123.1)	B-2(MP123.1)	B-2(MP123.1)	B-2(MP123.1)
Depth (ft)	14.0	1.0	3.0	5.5	8.0
Sample No.	B-1-6	B-2-1	B-2-2	B-2-3	B-2-4
Tare Number	14	41	28	6	22
Wt. of Tare & Wet Sample (g)	102.05	96.74	106.22	129.31	89.69
Wt. of Tare & Dry Sample (g)	80.04	82.85	95.57	115.46	82.43
Weight of Tare (g)	7.00	6.89	6.84	6.93	7.00
Weight of Water (g)	22.01	13.89	10.65	13.85	7.26
Weight of Dry Sample (g)	73.04	75.96	88.73	108.53	75.43
Water Content (%)	30.1	18.3	12.0	12.8	9.6
Notes :					

Tested By

' PC

5/9/17

Checked By

TMP

Date 5/10/17

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

Date

 $\label{eq:scellar} S:\ensuremath{\mathsf{Excel}}\ensuremath{\mathsf{Qa}}\ensuremath{\mathsf{Spreadsheets}}\ensuremath{\mathsf{Water}}\ensuremath{\mathsf{Content.xls}}\ensuremath{\mathsf{s}}$

MOISTURE CONTENT

ASTM D 2216-10

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2017-241-002

Lab ID:	013	014	015	016	017
Boring No.:	B-2(MP123.1)	B-2(MP123.1)	B-2(MP123.1)	B-2(MP123.1)	B-2(MP123.1)
Depth (ft):	9.5-11.0	13.1	16.0	22.0	23.5-25.0
Sample No.:	B-2-5	B-2-6	B-2-7	B-2-8	B-2-9
Tare Number	37	33	23	11	26
Wt. of Tare & Wet Sample (g)	68.06	117.28	107.80	69.49	153.42
Wt. of Tare & Dry Sample (g)	61.34	109.69	100.02	58.97	139.18
Weight of Tare (g)	6.97	6.83	6.85	6.92	6.91
Weight of Water (g)	6.72	7.59	7.78	10.52	14.24
Weight of Dry Sample (g)	54.37	102.86	93.17	52.05	132.27
Water Content (%)	12.4	7.4	8.4	20.2	10.8

Lab ID	018	019	020
Boring No.	B-2(MP123.1)	B-2(MP123.1)	B-2(MP123.1)
Depth (ft)	27.5	31.8	34.3
Sample No.	B-2-10	B-2-11	B-2-12
Tare Number	39	8	45
Wt. of Tare & Wet Sample (g)	78.60	63.91	124.75
Wt. of Tare & Dry Sample (g)	67.08	55.72	106.37
Weight of Tare (g)	6.87	6.96	7.08
Weight of Water (g)	11.52	8.19	18.38
Weight of Dry Sample (g)	60.21	48.76	99.29
Water Content (%)	19.1	16.8	18.5

Notes :

Tested By

PC

5/9/17 Checked By

Date

TMP

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

Date

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

5/10/17

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consutlants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-002Lab ID:2017-241-002-002

Boring No.: B-1(MP123.1) Depth (ft): 2.9 Sample No.: B-1-2 Soil Color: Dark Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consutlants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-002Lab ID:2017-241-002-002

Boring No.: B-1(MP123.1) Depth (ft): 2.9 Sample No.: B-1-2 Soil Color: Dark Brown

Moisture Content of Passing 3/4" S	Jample	Water Content of Retained 3/4" Sample	
Tare No.:	1423	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	395.94	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	380.57	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	143.44	Weight of Tare (g):	NA
Weight of Water (g):	15.37	Weight of Water (g):	NA
Weight of Dry Sample (g):	237.13	Weight of Dry Sample (g):	NA
Moisture Content (%):	6.5	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	237.13
Drv Weight of - 3/4" Sample (g):	173.3	Weight of - #200 Material (g):	24.05
Wet Weight of +3/4" Sample (g):	NA	Weight of + #200 Material (g):	213.08
Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 39.82	Weight of + #200 Material (g):	213.08

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	39.82	16.79	16.79	83.21	83.21
1/2"	12.50	38.38	16.19	32.98	67.02	67.02
3/8"	9.50	35.39	14.92	47.90	52.10	52.10
#4	4.75	35.99	15.18	63.08	36.92	36.92
#10	2.00	18.23	7.69	70.77	29.23	29.23
#20	0.850	8.87	3.74	74.51	25.49	25.49
#40	0.425	9.80	4.13	78.64	21.36	21.36
#60	0.250	10.57	4.46	83.10	16.90	16.90
#140	0.106	12.77	5.39	88.48	11.52	11.52
#200	0.075	3.26	1.37	89.86	10.14	10.14
Pan	-	24.05	10.14	100.00	-	-

	Tested By	HL	Date	5/11/17	Checked By	TMP	Date	5/11/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GenClient Reference:ACProject No.:201Lab ID:201

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-002 2017-241-002-005 Boring No.: B-1(MP123.1) Depth (ft): 11.2 Sample No.: B-1-5 Soil Color: Dark Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-002Lab ID:2017-241-002-005

Boring No.: B-1(MP123.1) Depth (ft): 11.2 Sample No.: B-1-5 Soil Color: Dark Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample	
Tare No.:	1549	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	594.92	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	497.70	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	142.95	Weight of Tare (g):	NA
Weight of Water (g):	97.22	Weight of Water (g):	NA
Weight of Dry Sample (g):	354.75	Weight of Dry Sample (g):	NA
Moisture Content (%):	27.4	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	354.75
Dry Weight of - 3/4" Sample (g):	45.1	Weight of - #200 Material (g):	276.12
Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	45.1 NA	Weight of - #200 Material (g): Weight of + #200 Material (g):	276.12 78.63
Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	45.1 NA 33.56	Weight of - #200 Material (g): Weight of + #200 Material (g):	276.12 78.63

0.1	0.		Denset	A 1 / 1	Demos	
Sieve	Sieve	vveight of Soli	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	33.56	9.46	9.46	90.54	90.54
3/4"	19.0	0.00	0.00	9.46	90.54	90.54
1/2"	12.50	0.00	0.00	9.46	90.54	90.54
3/8"	9.50	0.00	0.00	9.46	90.54	90.54
#4	4.75	2.88	0.81	10.27	89.73	89.73
#10	2.00	9.21	2.60	12.87	87.13	87.13
#20	0.850	13.22	3.73	16.59	83.41	83.41
#40	0.425	8.38	2.36	18.96	81.04	81.04
#60	0.250	4.79	1.35	20.31	79.69	79.69
#140	0.106	5.11	1.44	21.75	78.25	78.25
#200	0.075	1.48	0.42	22.16	77.84	77.84
Pan	-	276.12	77.84	100.00	-	-

	Tested By	HL	Date	5/11/17	Checked By	TMP	Date	5/16/17
page 2 of 2		DCN: CT-S3C DA	ATE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec C	onsultants	s, Inc.	E	Boring No.:	B-1(MP123.1)		
Client Reference:	ACP TXG000)7		C	Depth (ft): 11.2			
Project No.:	2017-241-002			5	Sample No.:	B-1-5		
Lab ID:	2017-241-002-005			Soi	Soil Description: DARK BROWN SILT			
Note: The USCS symbol used with this test refers only to t			the minus No	. 40	(Minus No. 40 sie	eve material,	Air dried)	
sieve material. See the	e "Sieve and Hy	drometer.	Analysis" g	graph page for	the complete	e material descri	ption .	
As Receiv	ed Moistur	e Conte	nt		Liqu	id Limit Test	[
AS	TM D2216-10			1	2	3	М	
Tare Number:		1	6	246	212	243	U	
Wt. of Tare & Wet Sa	ample (g):	76.	65	38.09	39.72	39.28	L	
Wt. of Tare & Dry Sa	mple (g):	61.	12	32.64	34.37	33.99	Т	
Weight of Tare (g):		6.9	98	17.52	19.29	18.89		
Weight of Water (g):		15	.5	5.5	5.4	5.3	P	
Weight of Dry Sample	e (g):	54	.1	15.1	15.1	15.1	0	
Was As Received MC	C Preserved:	Ye	es				I	
Moisture Content (%	6):	28	.7	36.0	35.5	35.0	N	
Number of Blows:				16	24	31	<u> </u>	
Plastic Limit Tes	t	1	2	Range		Test Result	ts	
Tare Number:		171	1339			Liquid Limit ((%):	35
Wt. of Tare & Wet Sa	ample (g):	25.66	24.72					
Wt. of Tare & Dry Sa	mple (g):	24.28	23.45			Plastic Limit	(%):	26
Weight of Tare (g): Weight of Water (g):		19.11 1 4	18.54 1.3			Plasticity Ind	ex (%):	9
Weight of Dry Sample	e (a):	5.2	4.9				<i>on (70)</i>	Ū
5 5 7 5 7		-	-			USCS Symbo	d:	ML
Moisture Content (%	6):	26.7	25.9	0.8		,		
Note: The acceptable	, e range of the t	wo Moistu	ire content	s is ± 1.4				
	Flow Curve				P	lasticity Chart		
20				<u>60</u>				
				60			/	
36				-				
24				50	01	100		
				-	CL	CH		
%) ³²				≪ ⁴⁰				
00 000 000 000 000 000 000 000 000 000				apul 30				
28				sticity			МН	
Ž 26				20				
24				-				
22				10				
					ML			
20 	10	• • •	100	0	20	10 60		100
	Number of Blo	ws			Liq	uid Limit (%)	00	100
Tested By RAL	Date	5/15/17	Chec	ked By	KC	Date 5/1	6/17	
mana 1 of 1 DOLL OTO 10 D								

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

Client: Client Project: Project No.: Lab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-002 2017-241-002-007		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP123.1) 15.7-16.5 R-1 : As Received-Unpreser	ved
Specimen	Weight (g):	467.70			
SPECIMEN	LENGTH (in)		SPE	CIMEN DIAMETER (in)	<u>.</u>
	Reading 1:	4.02		Reading 1	: 1.87
	Reading 2:	4.02		Reading 2	: 1.87
	Reading 3:	4.02		Average	: 1.87
	Average:	4.02		Area (in ²)	2.75
				L/D	: 2.15
MOISTURE	CONTENT				
Tare Numbe	er:	3084		Total Load (lb)	: 11,860
Wt. of Tare	& Wet Sample (g):	468.64	Uniaxial Comp	pressive Strength (psi)	: 4,320
Wt. of Tare	& Dry Sample (g):	466.01			
Weight of Ta	are (g):	6.71		Fracture Type	Cone & Split
Weight of W	/et Sample (g):	461.93			
Sample Volu	ume (cm ³):	180.72		Rate of Loading (lb/sec)	: 60
Moisture Co	ntent (%):	0.57		Time to Break (min:sec)	: 3:17.94
Unit Wet We	eight (g/cm ³):	2.588	Devia	tion From Straightness ²	:
Unit Wet We	eight (pcf):	161.5			
Unit Dry We	eight (g/cm ³):	2.573	AXIAL: Fail	TOP: Pass	BOTTOM: Pass
Unit Dry We	eight (pcf):	160.6			

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08

Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.

- 5) D4543 Prep and D7012 Testing Equipment Used: G788 Compression Machine,
 - G1661 Digital Calipers, G1380 Dial Gauge,
 - G1616 Straight Edge, G1571 Feeler Gauge,
 - G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	JAC	Date:	5/13/17	Checked By:	KC	Date: 5/17/17	7
page 1 of 1	DCN: CT45A; Revision No	.: 1e3 Revision Date: 4/	/5/17				

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

lient: lient Project: roject No.: ab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-002 2017-241-002-008		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-1 (MP123.1) 25.3-26.0 R-3 : As Received-Unprese	rved		
Specimen	Weight (g):	473.30					
SPECIMEN	<u>I LENGTH (in)</u>		SPE	CIMEN DIAMETER (in)	<u>:</u>		
	Reading 1:	4.03		Reading 1	: 1.87		
	Reading 2:	4.03		Reading 2	: 1.87		
	Reading 3:	4.03		Average	: 1.87		
	Average:	4.03		Area (in ²)	2.75		
				L/D	: 2.15		
MOISTURE	<u>CONTENT</u>						
Tare Numbe	er:	3172		Total Load (lb)	: 16,220		
Wt. of Tare	& Wet Sample (g):	475.53	Uniaxial Compressive Strength (psi): 5,89				
Wt. of Tare	& Dry Sample (g):	473.45					
Weight of T	are (g):	6.84		Fracture Type	: Cone & Split		
Weight of W	Vet Sample (g):	468.69					
Sample Volu	ume (cm ³):	181.97		Rate of Loading (lb/sec)	: 71		
Moisture Co	ontent (%):	0.45		Time to Break (min:sec)	: 3:47.91		
Unit Wet W	eight (g/cm ³):	2.601	Devia	tion From Straightness ²	-		
Unit Wet W	eight (pcf):	162.3					
Unit Dry We	eight (g/cm ³):	2.589	AXIAL: Pass	TOP: Pass	BOTTOM: Pass		
Unit Dry Wo	eight (pcf):	161.6					

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08
- Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.
- 5) D4543 Prep and D7012 Testing Equipment Used: G788 Compression Machine, G1661 Digital Calipers, G1380 Dial Gauge,
 - G1616 Straight Edge, G1571 Feeler Gauge,
 - G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	JAC	Date:	5/13/17	Checked By:	KC	Date: 5/17/17
page 1 of 1	DCN: CT45A; Revision No.:	1e3 Revision Date: 4	/5/17			

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosynClient Reference:ACP TProject No.:2017-2Lab ID:2017-2

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-002 2017-241-002-012 Boring No.: B-2(MP123.1) Depth (ft): 8.2 Sample No.: B-2-4 Soil Color: Brown

	Tested By	HL	Date	5/15/17	Checked By	TMP	Date	5/16/17
page 1 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-002Lab ID:2017-241-002-012

Boring No.: B-2(MP123.1) Depth (ft): 8.2 Sample No.: B-2-4 Soil Color: Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample				
Tare No.:	1437	Tare No.:	NA			
Wt. of Tare & Wet Sample (g):	691.83	Weight of Tare & Wet Sample (g):	NA			
Wt. of Tare & Dry Sample (g):	691.83	Weight of Tare & Dry Sample (g):	NA			
Weight of Tare (g):	144.15	Weight of Tare (g):	NA			
Weight of Water (g):	0.00	Weight of Water (g):	NA			
Weight of Dry Sample (g):	547.68	Weight of Dry Sample (g):	NA			
Moisture Content (%):	0.0	Moisture Content (%):	NA			
Moisture Content (%):	0.0 	Weight of the Dry Sample (g):	547.68			
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	0.0 NA 248.7	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g):	547.68 213.75			
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	0.0 NA 248.7 NA	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	547.68 213.75 333.93			
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	0.0 NA 248.7 NA 85.20	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	547.68 213.75 333.93			

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	1 0			Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	73.68	13.45	13.45	86.55	86.55
3/4"	19.0	11.52	2.10	15.56	84.44	84.44
1/2"	12.50	12.14	2.22	17.77	82.23	82.23
3/8"	9.50	6.45	1.18	18.95	81.05	81.05
#4	4.75	43.35	7.92	26.87	73.13	73.13
#10	2.00	48.09	8.78	35.65	64.35	64.35
#20	0.850	26.74	4.88	40.53	59.47	59.47
#40	0.425	22.23	4.06	44.59	55.41	55.41
#60	0.250	28.79	5.26	49.84	50.16	50.16
#140	0.106	46.30	8.45	58.30	41.70	41.70
#200	0.075	14.64	2.67	60.97	39.03	39.03
Pan	-	213.75	39.03	100.00	-	-

	Tested By	HL	Date	5/15/17	Checked By	TMP	Date	5/16/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client:	t: Geosyntec Consultants, Inc.					Boring No.:	B-2(MP123.1)	
Client Referen	nce:	ACP TXG00	07			Depth (ft):	8.2		
Project No.:		2017-241-00)2			Sample No.:	B-2-4		
Lab ID:		2017-241-00)2-012		S	oil Description:	BROWN LEA	AN CLAY	
Note: The US	SCS symb	ol used with	this test ref	ers only to	the minus N	lo. 40	(Minus No. 40 s	sieve material,	Air dried)
sieve material	I. See the	"Sieve and H	ydrometer .	Analysis" g	raph page f	or the complete	material desc	ription .	
As l	Receive	ed Moistur	e Contei	nt		Liqui	d Limit Tes	st	
	AST	M D2216-10			1	2	3	М	
Tare Number	:		2	2	115	144	158	U	
Wt. of Tare & Wet Sample (g):		89.	69	44.70	38.35	37.64	L		
Wt. of Tare &	Dry Sam	nple (g):	82.	43	39.04	33.88	33.04	Т	
Weight of Tar	re (g):		7.0	00	18.63	17.98	17.49	I	
Weight of Wa	ater (g):		7.	3	5.7	4.5	4.6	Р	
Weight of Dry	/ Sample	(g):	75	.4	20.4	15.9	15.6	0	
Was As Rece	eived MC	Preserved:	Ye	es				I	
Moisture Co	ntent (%)):	9.	6	27.7	28.1	29.6	Ν	
Number of B	lows:				35	27	19	Т	
			-					•-	
Plastic Lin	nit Test		1	2	Range		Test Resu	lts	
-			000	045				(0/)	
Tare Number	: Mat Car		203	315			Liquia Limit	(%):	29
Wt. of Tare &	Dry Son	npie (g):	20.07	24.00			Plaatia Limit	4 /0/ \.	10
With of Tare &	Diy San	ipie (g):	24.03	23.74			Plastic Limit	[(%):	10
Weight of Ma	re (g):		19.34	18.59			Diacticity	day (0/).	44
Weight of Dr.	iter (g): / Somplo	(a):	0.9	0.9			Plasticity in	uex (%):	11
weight of Dry	/ Sample	(g).	5.5	0.2			LISCS Symb		CI
Moisture Co	ntent (%)		17 8	17 9	-0 1			01.	0L
Note: The ac	centable	range of the	two Moistu	re contents	$s_{1}s_{2} + 14$				
	optable	Flow Curve		10 001101110		PI	asticity Char	ť	
								•	
32					60			/	
i i					-			<i>.</i> /	
30					50		/	/	
[-	CL	/ CI	ч 🖊	
₹ 28			<u>v</u>						
ייי (3 או (3					€) ⁺				
. uter					ge			*	
Ö ²⁶					<u>ع</u> 30				
ter					tici			МН	
а 24 [20	/	_X		
22					10				
:									
20 –	· · ·	10		<u></u> 100	0	20 44			100
-		Number of Blo	ows			20 40 Liau	uid Limit (%)	80	100
					CL- IVIL				
Tested By	BS	Date	5/11/17	Chec	ked By	TMP	Date 5	/12/17	

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:GeosyClient Reference:ACP TProject No.:2017-2Lab ID:2017-2

Geosyntec Consultants, Inc. ACP TXG0007 2017-241-002 2017-241-002-013 Boring No.: B-2(MP123.1) Depth (ft): 10.8 Sample No.: B-2-5 Soil Color: Brown

	Tested By	HL	Date	5/11/17	Checked By	TMP	Date	5/16/17
page 1 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:Geosyntec Consultants, Inc.Client Reference:ACP TXG0007Project No.:2017-241-002Lab ID:2017-241-002-013

Boring No.: B-2(MP123.1) Depth (ft): 10.8 Sample No.: B-2-5 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1477	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	484.12	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	450.30	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	144.11	Weight of Tare (g):	NA
Weight of Water (g):	33.82	Weight of Water (g):	NA
Weight of Dry Sample (g):	306.19	Weight of Dry Sample (g):	NA
Moisture Content (%):	11.0	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	306.19
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	NA 116.6	Weight of the Dry Sample (g): Weight of - #200 Material (g):	306.19 177.02
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	NA 116.6 NA	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	306.19 177.02 129.17
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 116.6 NA 12.55	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	306.19 177.02 129.17

					_	
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	12.55	4.10	4.10	95.90	95.90
1/2"	12.50	13.30	4.34	8.44	91.56	91.56
3/8"	9.50	8.41	2.75	11.19	88.81	88.81
#4	4.75	11.70	3.82	15.01	84.99	84.99
#10	2.00	12.97	4.24	19.25	80.75	80.75
#20	0.850	12.36	4.04	23.28	76.72	76.72
#40	0.425	9.20	3.00	26.29	73.71	73.71
#60	0.250	12.89	4.21	30.50	69.50	69.50
#140	0.106	26.74	8.73	39.23	60.77	60.77
#200	0.075	9.05	2.96	42.19	57.81	57.81
Pan	-	177.02	57.81	100.00	-	-

	Tested By	HL	Date	5/11/17	Checked By	TMP	Date	5/16/17
page 2 of 2		DCN: CT-S3C DA	TE 3/20/13 REV	ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client: Geosyntec Consultants, Inc. Client Reference: ACP TXG0007 Project No.: 2017-241-002 Lab ID: 2017-241-002-013 Note: The USCS symbol used with this test refers only to sieve material. See the "Sieve and Hydrometer Analysis"; As Received Moisture Content				S the minus N uraph page f	Boring No.: Depth (ft): Sample No.: oil Description: Io. 40	B-2(MP123.1 10.8 B-2-5 BROWN LEA (Minus No. 40 s	AN CLAY sieve material,	Air dried)
As Receiv	ed Moistur	e Conten	nt		Liquid Limit Test			
AST	TM D2216-10			1	2	3	Μ	
Tare Number:		37		201	17	313	U	
Wt. of Tare & Wet Sa	mple (g):	68.0	06	37.97	38.14	38.73	L	
Wt. of Tare & Dry Sar	mple (g):	61.3	34	33.25	33.67	34.29	т	
Weight of Tare (g):		6.9	7	17.27	17.76	18.40	1	
Weight of Water (g):		6.7	7	4.7	4.5	4.4	Р	
Weight of Dry Sample	e (g):	54.	4	16.0	15.9	15.9	Ο	
Was As Received MC	Preserved:	Ye	s				1	
Moisture Content (%	5):	12.	4	29.5	28.1	27.9	Ν	
Number of Blows:				15	28	35	т	
Plastic Limit Test	t	1	2	Range		Test Resu	lts	
Tare Number:		231	122			Liquid Limit	. (%):	28
Wt. of Tare & Wet Sa	mple (g):	25.94	24.97					
Wt. of Tare & Dry Sar	mple (g):	24.95	23.97			Plastic Limi	t (%):	19
Weight of Tare (g):		19.67	18.66					
Weight of Water (g):		1.0	1.0			Plasticity In	dex (%):	9
Weight of Dry Sample	e (g):	5.3	5.3					
						USCS Symb	ol:	CL
Moisture Content (%	.):	18.8	18.8	-0.1				
Note: The acceptable	range of the t	wo Moistur	re contents	s is ± 1.4				
	Flow Curve				P	lasticity Char	t	
32	· · · · · · · · ·			60				
							1	
20				50		<i>!</i>	· /	
30				50	CI		н /	
		\otimes		-	UL		' /	
S 28				§ 40		, <i>i</i>		
ent				ex				
žu 26								
Ŭ				, ity	je se		мн	
/ate				stic				
S 24				e 20				
				-				
22	<u> </u>			10				
20					ML			

RAL 5/15/17 Checked By TMP 5/16/17 Tested By Date Date page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

10

Number of Blows

20

1

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

80

100

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

0

0

CL- ML

20

40

Liquid Limit (%)

60

100

ATTERBERG LIMITS

ASTM D 4318-10

Client:Geosyntec (Construction)Client Reference:ACP TXG00Project No.:2017-241-00Lab ID:2017-241-00Note:The USCS symbol used with a sieve material. See the "Sieve and H	Consultants 07 02 02-016 this test res	s, Inc. fers only to Analysis" o	ן כ So the minus No נומחת הפתפ fo	Boring No.: Depth (ft): Sample No.: il Descriptior 5. 40	B-2(MP123. 22.0 B-2-8 h: BROWN LE (Minus No. 40	1) AN CLAY sieve material,	Air dried)
As Received Moistur	e Conte	nt		l in	ud L imit Te	st	
ASTM D2216-10	c come		1	2	3	M	
Tare Number:	1	1	161	202	355	U	
Wt. of Tare & Wet Sample (g):	69.	.49	38.14	37.55	38.79	Ĺ	
Wt. of Tare & Dry Sample (g):	58.	.97	32.60	32.24	33.61	Т	
Weight of Tare (g):	6.	92	17.83	17.29	18.17	I	
Weight of Water (g):	10).5	5.5	5.3	5.2	Р	
Weight of Dry Sample (g):	52	2.1	14.8	15.0	15.4	0	
Was As Received MC Preserved:	Ye	es				I	
Moisture Content (%):	20	.2	37.5	35.5	33.5	Ν	
Number of Blows:			17	25	35	т	
				1	I		
Plastic Limit Test	1	2	Range		Test Resu	ılts	
Tare Number:	145	220			Liquid Limi	t (%):	35
Wt. of Tare & Wet Sample (g):	23.80	25.43					
Wt. of Tare & Dry Sample (g):	22.74	24.45			Plastic Limi	it (%):	19
Weight of Tare (g):	17.34	19.26					
Weight of Water (g):	1.1	1.0			Plasticity In	dex (%):	16
Weight of Dry Sample (g):	5.4	5.2					
	40.0	40.0	o -		USCS Symb	ool:	CL
Moisture Content (%):	19.6	18.9	0.7				
Note: The acceptable range of the	two inioistl	ire content	s IS ± 1.4			-4	
Flow Curve				F	Plasticity Cha	π	
40			60				
38			-				
			50		/		
36	\otimes			CL	/ C	н 🖊	
a ³⁴			~				
			<u>گ</u> ⁴⁰		, i i		
			- de				
ğ 30			5	1			1
E			5 ³⁰				
28 28			1 30			МН	

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

5/16/17

80

100

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

Checked By

10

0

0

CL- ML

100

 \bigotimes

ML

40 60 Liquid Limit (%)

Date

60

ł

20

TMP

26

24

22

20

Tested By

1

RAL

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

10

Number of Blows

5/15/17

Date

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2017-241-002
Lab ID:	2017-241-002-018

 Boring No.:
 B-2(MP123.1)

 Depth (ft):
 27.5

 Sample No.:
 B-2-10

 Soil Color:
 Brown

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	4.84	
#4 To #200	Sand	28.75	
Finer Than #200	Silt & Clay	66.40	
USCS Symbol: CL, TESTED			
USCS Classification: SANDY LEAN CLAY			

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2(MP123.1)
Client Reference:	ACP TXG0007	Depth (ft):	27.5
Project No.:	2017-241-002	Sample No.:	B-2-10
Lab ID:	2017-241-002-018	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMAR	Y Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	11.04	0.00
2	88.96	Sand	24.59	27.64
0.05	64.38	Silt	32.05	36.03
0.002	32.32	Clay	32.32	36.33
		USDA Classification:	CLAY LOAM	

page 2 of 4 DCN: CT-S3A

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2(MP123.1)
Client Reference:	ACP TXG0007	Depth (ft):	27.5
Project No.:	2017-241-002	Sample No.:	B-2-10
Lab ID:	2017-241-002-018	Soil Color:	Brown

Moisture Content of Passing 3/4" Mate	erial	Water Content of Retained 3/4" Material		
Tare No.	1468	Tare No.	NA	
Weight of Tare & Wet Sample (g)	447.73	Weight of Tare & Wet Sample (g)	NA	
Weight of Tare & Dry Sample (g)	392.76	Weight of Tare & Dry Sample (g)	NA	
Weight of Tare (g)	147.19	Weight of Tare (g)	NA	
Weight of Water (g)	54.97	Weight of Water (g)	NA	
Weight of Dry Sample (g)	245.57	Weight of Dry Sample (g)	NA	
Moisture Content (%)	22.4	Moisture Content (%)	NA	
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	245.57	
Dry Weight of -3/4" Sample (g)	82.50	Weight of - #200 Material (g)	163.07	
Wet Weight of +3/4" Sample (g) NA		Weight of + #200 Material (g)	82.50	
Dry Weight of +3/4" Sample (g)	0.00			

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	1.42	0.58	0.58	99.42	99.42
#4	4.75	10.47	4.26	4.84	95.16	95.16
#10	2.00	15.22	6.20	11.04	88.96	88.96
#20	0.85	14.83	6.04	17.08	82.92	82.92
#40	0.425	10.69	4.35	21.43	78.57	78.57
#60	0.250	10.05	4.09	25.52	74.48	74.48
#140	0.106	15.32	6.24	31.76	68.24	68.24
#200	0.075	4.50	1.83	33.60	66.40	66.40
Pan	-	163.07	66.40	100.00	 -	-

	Tested By	HL	Date	5/11/17	Checked By	TMP	Date	5/16/17
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2(MP123.1)
Client Reference:	ACP TXG0007	Depth (ft):	27.5
Project No.:	2017-241-002	Sample No.:	B-2-10
Lab ID:	2017-241-002-018	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	N	K	Diameter	N'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	48.0	24.1	5.61	42.4	92.1	0.01281	0.0263	61.2
5	46.0	24.1	5.61	40.4	87.8	0.01281	0.0169	58.3
15	42.5	24.1	5.61	36.9	80.1	0.01281	0.0101	53.2
30	39.5	24.1	5.61	33.9	73.6	0.01281	0.0073	48.9
60	37.0	23.4	5.86	31.1	67.7	0.01291	0.0053	44.9
250	30.0	23.1	5.97	24.0	52.2	0.01296	0.0028	34.7
1440	25.5	23.7	5.75	19.7	42.9	0.01287	0.0012	28.5

Soil Specimen Data		Other Corrections		
Tare No.	923			
Weight of Tare & Dry Material (g)	149.49	a - Factor	0.99	
Weight of Tare (g)	98.92			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	66.40	
Weight of Dry Material (g)	45.6			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

_	Tested By	то	Date	5/11/17	Checked By	TMP	Date	5/16/17	
page 4 of 4		DCN: CT-S3A DATE		S:E	xcel\Excel QA\Spre	adsheets\SieveH	łyd.xls		

ATTERBERG LIMITS

ASTM D 4318-10

Client:	Geosyntec Consultants, Inc.					Bo	oring No.:	B-2(MP123	3.1)	
Client Ref	ference: ACP TXG0007					De	epth (ft):	27.5		
Project No	ect No.: 2017-241-002					Sa	ample No.:	B-2-10		
Lab ID:	ID: 2017-241-002-018					Soil	Description	BROWN L	EAN CLAY	
Note: The USCS symbol used with this test refers only to a						nus No.	40	(Minus No. 40) sieve material,	Air dried)
sieve mate	erial. See the	"Sieve and H	/drometer	Analysis"	graph pa	age for a	the complete	e material des	scription .	
As Received Moisture Content						Liquid Limit Test				
	AST	M D2216-10			1		2	3	М	
Tare Num	nber:		3	9	14	6	158	196	U	
Wt. of Tar	re & Wet Sa	mple (g):	78.	.60	39.2	26	37.73	37.75	L	
Wt. of Tar	re & Dry Sar	nple (g):	67.	33.5	50	32.21	32.48	т		
Weight of	Tare (g):		6.	87	18.9	95	17.49	17.70	I	
Weight of	Water (g):		11	.5	5.8	3	5.5	5.3	Р	
Weight of	Dry Sample	e (g):	60.2		14.	6	14.7	14.8	0	
Was As R	Received MC	Preserved:	Yes						I	
Moisture	Content (%):	19	19.1		6	37.5	35.7	N	
Number o	of Blows:				16	6	24	33	Т	
Disstic	l insit Taat		4	•	Dav			Test Des		
Plastic		[1	2	Ran	ge		lest Res	uits	
Tara Num	hor:		З	236					it (%).	37
Wt of Tai	1001. ro & Wot Sa	mple (a).	25.23	24 55					int (70).	57
Wt of Tai	re & Dry Sar	nple (g):	20.20	23.51				Plastic I in	nit (%)·	21
Weight of	Tare (g)	(g).	18 89	18 49					int (70).	21
Weight of	Water (g):		1 1	1.0				Plasticity I	ndex (%):	16
Weight of	Drv Sample	e (a):	5.2	5.0				i lucitority i		
		(3)						USCS Sym	nbol:	CL
Moisture	Content (%):	21.0	20.7	0.3	3		,		
Note: The	acceptable	range of the t	wo Moisti	ire content	ts is ± 1.	4				
		Flow Curve					Р	lasticity Cha	art	
45 🗖					60					
					00					
ŀ										
40					50		CI			
ļ							UL	· / '		
(%)					% 40					
35 ent					lex			1		
out					u 30			/		
					city				МН	
					asti					
					a 20					
25										
ł					10					
ŀ										
₂₀ [0	/	ML			
1		10 Number of Blo	ws	100	()/	20 4	0 60	80	100
					CL-İ	ИL	Liq	uid Limit (%)		
Tested B	/ RAL	Date	5/15/17	Cheo	cked Bv		TMP	Date	5/16/17	

page 1 of 1 DCN: CTS4B, REV. 5, 9/13/13

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls
SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	Geosyntec Consultants, Inc.
Client Reference:	ACP TXG0007
Project No.:	2017-241-002
Lab ID:	2017-241-002-019

Boring No.:B-2(MP123.1)Depth (ft):31.8Sample No.:B-2-11Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)			
Greater Than #4	Gravel	12.40	
#4 To #200	Sand	41.74	
Finer Than #200	Silt & Clay	45.86	
USCS Symbol:			
USCS Classification: CLAYEY SAND			

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2(MP123.1)
Client Reference:	ACP TXG0007	Depth (ft):	31.8
Project No.:	2017-241-002	Sample No .:	B-2-11
Lab ID:	2017-241-002-019	Soil Color:	Brown

PERCENT SAND

Particle Size	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	24.40	0.00
2	75.60	Sand	30.84	40.80
0.05	44.76	Silt	19.92	26.35
0.002	24.84	Clay	24.84	32.85
		USDA Classification:	CLAY LOAM	

page 2 of 4 DCN: CT-S3A DAT

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2(MP123.1)
Client Reference:	ACP TXG0007	Depth (ft):	31.8
Project No.:	2017-241-002	Sample No.:	B-2-11
Lab ID:	2017-241-002-019	Soil Color:	Brown

Moisture Content of Passing 3/4" Mate	erial	Water Content of Retained 3/4" Material	
Tare No.	1453	Tare No.	NA
Weight of Tare & Wet Sample (g)	494.69	Weight of Tare & Wet Sample (g)	NA
Weight of Tare & Dry Sample (g)	494.69	Weight of Tare & Dry Sample (g)	NA
Weight of Tare (g)	137.35	Weight of Tare (g)	NA
Weight of Water (g)	0.00	Weight of Water (g)	NA
Weight of Dry Sample (g)	357.34	Weight of Dry Sample (g)	NA
Moisture Content (%)	0.0	Moisture Content (%)	NA
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	357.34
Dry Weight of -3/4" Sample (g)	193.45	Weight of - #200 Material (g)	163.89
Wet Weight of $\pm 3/4$ " Sample (g)	NIA	Woight of \pm #200 Matorial (a)	193 45
	INA	$\gamma = 1$	100110
Dry Weight of $+3/4$ " Sample (g)	0.00	Weight of + #200 Material (g)	100.10

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	22.92	6.41	6.41	93.59	93.59
3/8"	9.50	4.64	1.30	7.71	92.29	92.29
#4	4.75	16.74	4.68	12.40	87.60	87.60
#10	2.00	42.90	12.01	24.40	75.60	75.60
#20	0.85	28.41	7.95	32.35	67.65	67.65
#40	0.425	19.07	5.34	37.69	62.31	62.31
#60	0.250	19.68	5.51	43.20	56.80	56.80
#140	0.106	30.46	8.52	51.72	48.28	48.28
#200	0.075	8.63	2.42	54.14	45.86	45.86
Pan	-	163.89	45.86	100.00	-	-

	Tested By	HL	Date	5/15/17	Checked By	TMP	Date	5/17/17
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	Geosyntec Consultants, Inc.	Boring No.:	B-2(MP123.1)
Client Reference:	ACP TXG0007	Depth (ft):	31.8
Project No.:	2017-241-002	Sample No.:	B-2-11
Lab ID:	2017-241-002-019	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	Ν	K	Diameter	N'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	36.0	22.1	6.33	29.7	94.5	0.01311	0.0299	43.4
5	35.5	22.1	6.33	29.2	92.9	0.01311	0.0190	42.6
15	33.5	22.1	6.33	27.2	86.6	0.01311	0.0111	39.7
33	30.5	22.1	6.33	24.2	77.0	0.01311	0.0077	35.3
60	29.5	22.1	6.33	23.2	73.8	0.01311	0.0057	33.9
250	25.0	23.1	5.97	19.0	60.6	0.01296	0.0029	27.8
1440	20.5	22.4	6.22	14.3	45.5	0.01307	0.0012	20.9

Soil Specimen Data		Other Corrections		
Tare No.	520			
Weight of Tare & Dry Material (g)	126.38	a - Factor	0.99	
Weight of Tare (g)	90.30			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	45.86	
Weight of Dry Material (g)	31.1			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	5/15/17	Checked By	TMP	Date	5/17/17	
page 4 of 4	Of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11					S.	:Excel\Excel QA\Spr	eadsheets\Sievel	-lyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Client:	GeoSyntec Consultants, Inc. Boring No.: B-2(MP123.1)							
Project No :	2017-241-00	2			Sample No ·	B-2-11		
I ah ID:	2017-241-002 ab ID: 2017-241-002			So	il Description			
Note: The USCS svi	mbol used with t	his test refers	only to	the minus No	4 0		ieve material	Air dried)
sieve material. See th	he "Sieve and Hy	drometer Ana	lysis" g	raph page fo	r the complete	material desci	ription .	
As Recei	ived Moisture	e Content			Liqui	id Limit Tes	t	
A	STM D2216-10			1	2	3	М	
Tare Number:		8		319	405	396	U	
Wt. of Tare & Wet S	Sample (g):	63.91		41.01	39.91	42.38	L	
Wt. of Tare & Dry Sa	ample (g):	55.72		35.10	33.80	35.42	т	
Weight of Tare (g):	1 (0)	6.96		18.31	17.44	17.69	I	
Weight of Water (g)	:	8.2		5.9	6.1	7.0	Р	
Weight of Dry Samp	ble (a):	48.8		16.8	16.4	17.7	Ō	
Was As Received M	IC Preserved:	Yes					Ī	
Moisture Content (%).	16.8		35.2	37 3	39.3	N	
Number of Blows:	/0].	10.0		35	25	17	Т	
		-		_				
Plastic Limit Te	st	1	2	Range		lest Resu	lts	
Tare Number:		1251 1	287			Liquid Limit	(%):	37
Wt. of Tare & Wet S	Sample (g):	21.02 2	2.25					
Wt. of Tare & Dry Sa	ample (g):	20.00 2	1.20			Plastic Limit	. (%):	20
Weight of Tare (g):		14.95 1	6.00					
Weight of Water (g)	:	1.0	1.1			Plasticity Inc	lex (%):	17
Weight of Dry Samp	ole (g):	5.1	5.2			_		
Maiatura Cantant (0/)-	20.0	20.0	0.0		USCS Symbol	ol:	CL
Note: The acceptab	%): le range of the t	20.2 No Moisture d	20.2 contents	0.0 s is + 1 4				
	Flow Curve				Р	lasticity Chart	t	
45	_			60		-		
				50				
40		1		-	CL	CH	1	
(%		\otimes				, / · ·		
t 35				s l				
- ute				P L				
ပိ ြ				<u></u> 30 <u>30</u>				
30 · · · · ·				stic			IVIH	
Š.				20				
				-				
25				10				
				10	<i></i>			
20					ML			
20	10		100	0	20 4		80	1 00
	Number of Blo	ws			Liq	uid Limit (%)	00	

 Tested By
 TO
 Date
 5/12/17
 Checked By
 TMP
 Date
 5/12/17

 page 1 of 1
 DCN: CTS4B, REV. 5, 9/13/13
 t

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

Specimen Weight (g):473.35SPECIMEN LENGTH (in)SPECIMEN DIAMETER (in):Reading 1:4.00Reading 2:4.00Reading 3:4.00Reading 3:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:4.00Average:6.00You:5.00Weight of Tare (g):6.88Weight of Wet Sample (g):472.44	
SPECIMEN LENGTH (in)SPECIMEN DIAMETER (in):Reading 1:4.00Reading 1:1.97Reading 2:4.00Reading 2:1.98Reading 3:4.00Average:1.97Average:4.00Average:1.97Average:4.00Average:3.06L/D:2.03L/D:2.03MOISTURE CONTENTTotal Load (lb):1,900Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi:620Wt. of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44Fracture Type:Shear	
Reading 1: 4.00 Reading 1: 1.97 Reading 2: 4.00 Reading 2: 1.98 Reading 3: 4.00 Average: 1.97 Average: 4.00 Average: 1.97 Average: 4.00 Average: 3.06 L/D: 2.03 L/D: 2.03 MOISTURE CONTENT Total Load (lb): 1,900 Wt. of Tare & Wet Sample (g): 479.32 Uniaxial Compressive Strength (psi): 620 Wt. of Tare & Dry Sample (g): 475.00 Fracture Type: Shear Weight of Tare (g): 6.88 Fracture Type: Shear Weight of Wet Sample (g): 472.44 Kear Kear	
Reading 2: 4.00 Reading 2: 1.98 Reading 3: 4.00 Average: 1.97 Average: 4.00 Area (in ²): 3.06 L/D: 2.03 L/D: 2.03 MOISTURE CONTENT Total Load (lb): 1,900 Wt. of Tare & Wet Sample (g): 479.32 Uniaxial Compressive Strength (psi): 620 Wt. of Tare & Dry Sample (g): 475.00 Fracture Type: Shear Weight of Tare (g): 6.88 Fracture Type: Shear Weight of Wet Sample (g): 472.44 Yt.44 Yt.44	
Reading 3:4.00Average:1.97Average:4.00Area (in²):3.06L/D:2.03MOISTURE CONTENTITare Number:3061Total Load (lb):1,900Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi):620Weight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44KearKear	
Average:4.00Area (in²):3.06L/D:2.03MOISTURE CONTENTTare Number:3061Total Load (lb):1,900Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi):620Wt. of Tare & Dry Sample (g):475.00Fracture Type:ShearWeight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44Strength (strength (str	
L/D:2.03MOISTURE CONTENT3061Total Load (lb):1,900Tare Number:3061Total Load (lb):1,900Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi):620Wt. of Tare & Dry Sample (g):475.00Fracture Type:ShearWeight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44ShearShear	
MOISTURE CONTENTTare Number:3061Total Load (lb):1,900Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi):620Wt. of Tare & Dry Sample (g):475.00Fracture Type:ShearWeight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44Strength (g):Strength (g):	
Tare Number:3061Total Load (lb):1,900Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi):620Wt. of Tare & Dry Sample (g):475.00Fracture Type:ShearWeight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44ShearShear	
Wt. of Tare & Wet Sample (g):479.32Uniaxial Compressive Strength (psi):620Wt. of Tare & Dry Sample (g):475.00Fracture Type:ShearWeight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44Fracture Type:Shear	
Wt. of Tare & Dry Sample (g):475.00Weight of Tare (g):6.88Weight of Wet Sample (g):472.44	
Weight of Tare (g):6.88Fracture Type:ShearWeight of Wet Sample (g):472.44	
Weight of Wet Sample (g): 472.44	
Sample Volume (cm ³): 200.71 Rate of Loading (lb/sec): 32	
Moisture Content (%): 0.92 Time to Break (min:sec): 0:58.53	
Unit Wet Weight (g/cm ³): 2.358 Deviation From Straightness ² :	
Unit Wet Weight (pcf): 147.2	
Unit Dry Weight (g/cm ³): 2.337 AXIAL: Fail TOP: Pass BOTTOM	Pass
Unit Dry Weight (pcf): 145.8	

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08
- Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.
- 5) D4543 Prep and D7012 Testing Equipment Used: G788 Compression Machine,
 - G1661 Digital Calipers, G1380 Dial Gauge,
 - G1616 Straight Edge, G1571 Feeler Gauge,
 - G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	JAC	Date:	5/13/17	Checked By:	KC	Date:	5/17/17
page 1 of 1	DCN: CT45A; Revision No.:	1e3 Revision Date: 4	/5/17				

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS

ASTM D 7012-14 Method C

This method does not report strain rate or deformation

Client: Client Project: Project No.: ab ID No.:	Geosyntec Consultants, Inc. ACP TXG0007 2017-241-002 2017-241-002-022		Boring No.: Depth (ft): Sample ID: Moisture Condition	B-2 (MP123.1) 49.2-50.0 R-3 : As Received-Unpreser	ved
Specimen	Weight (g):	481.24			
SPECIMEN	<u>I LENGTH (in)</u>		SPE	ECIMEN DIAMETER (in):	
	Reading 1:	4.00		Reading 1:	1.97
	Reading 2:	4.00		Reading 2:	1.98
	Reading 3:	4.00		Average:	1.98
	Average:	4.00		Area (in ²):	3.06
				L/D:	2.02
MOISTURE	<u>CONTENT</u>				
Tare Numbe	er:	3247		Total Load (lb):	2,890
Wt. of Tare	& Wet Sample (g):	472.92	Uniaxial Comp	pressive Strength (psi):	940
Wt. of Tare	& Dry Sample (g):	468.82			
Weight of T	are (g):	6.74		Fracture Type:	Cone & Split
Weight of W	Vet Sample (g):	466.18			
Sample Vol	ume (cm ³):	200.58		Rate of Loading (lb/sec):	29
Moisture Co	ontent (%):	0.89		Time to Break (min:sec):	1:38.15
Unit Wet W	eight (g/cm ³):	2.399	Devia	ation From Straightness ² :	:
Unit Wet W	eight (pcf):	149.7			
Unit Dry W	eight (g/cm³):	2.378	AXIAL: Fail	TOP: Pass	BOTTOM: Pass
Unit Dry W	eight (pcf):	148.4			

Physical Description:

Rock Core

Notes:

- 1) Moisture conditions at time of the test are: As Received-Unpreserved
- 2) Sample prep conforms to ASTM D4543-08 "best effort" if applicable
- 3) Deviation from straightness, Procedure A of ASTM D 4543-08

Pass/Fail criteria: gap < 0.02 = Pass, gap > 0.02 = Fail4) Temperature is laboratory room temperature.

- 5) D4543 Prep and D7012 Testing Equipment Used: G788 Compression Machine, G1661 Digital Calipers, G1380 Dial Gauge,
- G1616 Straight Edge, G1571 Feeler Gauge,

G1633 V-Block, G1634 Rock Saw, G1635 Grinder.

Tested By:	JAC	Date:	5/13/17	Checked By:	KC	Date: 5/17/17
page 1 of 1	DCN: CT45A; Revision No.:	: 1e3 Revision Date: 4	/5/17			

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net