ATLANTIC COAST PIPELINE, LLC ATLANTIC COAST PIPELINE

and

DOMINION ENERGY TRANSMISSION, INC. SUPPLY HEADER PROJECT

Supplemental Filing July 28, 2017

APPENDIX A-1

Update to the Northampton Compressor Station Air Permit Application

July 20, 2017

BY: OVERNIGHT MAIL

Mr. Charles McEachern Raleigh Regional Office NCDEQ Division of Air Quality Suite 101 3800 Barrett Drive Raleigh, NC 27609

RE: Atlantic Coast Pipeline, L.L.C.

Northampton Compressor Station

Air Permit Application Update

Dear Mr. McEachern:

Atlantic Coast Pipeline, LLC (ACP) is submitting updates to the Northampton Compressor Station permit application, dated September 16, 2015. The changes are to ancillary equipment including emergency generators and storage tanks. No changes are requested for the main natural gas compressors. The changes do not materially affect the applicable regulatory requirements. ACP is proposing the following updates:

- Replace the Caterpillar G3516 emergency generator rated at 1,416 hp (EG-01) with a Caterpillar G3516B emergency generator rated at 1,818 hp;
- Add a new Generac SG100 emergency generator rated at 148.9 hp (EG-02) for the regional operations center;
- Replace the boiler rated at 6.3 MMBtu/hr (WH-01) with a Hurst LPW-G-125-60W boiler rated at 5.25 MMBtu/hr;
- Decrease the volume of the proposed pipeline fluids tank (TK-2) from 1,500 gallons to 1,000 gallons;
- Increase the volume of the proposed Ammonia Tank (TK-3) from 8,000 gallons to 13,400 gallons; and
- Correct a calculation error that overestimated fugitive emissions.

The updated application forms are contained in Attachment 1 including the equipment changes. A revised site plan is contained in Attachment 2. Revised emission calculations are provided in Attachment 3 based on the same operating assumptions used in the original application. Vendor specifications are provided in Attachment 4 for the updated emergency generators (EG-01, EG-

02) and the boiler (WH-01). The changes in annual emissions are summarized in the following table; creating a decrease in NO_X , CO, VOC, and CO_{2e} values.

		Annual Emissions (Tons/Year)									
	NO_X	CO	VOC	PM	SO_2	CO _{2e}					
Original Application	19.7	31.1	41.1	18.4	3.1	145,686					
Proposed Update	19.2	31.0	21.2	18.4	3.1	129,133					

If you have questions about this submittal, please do not hesitate to contact Mr. Laurence Labrie at (804) 273-3075 or at laurence.a.labrie@dominionenergy.com.

Sincerely,

Richard B. Gangle, Manager

Environmental

Atlantic Coast Pipeline

ATTACHMENTS

ERM DOMINION - ACP-3 STATION

ATTACHMENT A

NC DENR PERMIT APPLICATION FORMS

ERM DOMINION - ACP-3 STATION

FORM A1

FACILITY (General Information)

REVISED 05/25/12		NCDENR/Division of Ai	r Quality - Application	n for Air Permit to Constr	uct/Operate			A1
CONTRACTOR OF STREET	NOTE	- APPLICATION WI	LL NOT BE PRO	CESSED WITHOUT T	HE FOLLOW	VING:		
☑ Loc	cal Zoning Consiste	ency Determination (if requ	uired) 🔲 Facility Re	duction & Recycling Survey	Form (Form A4) ☑λppli	cation Fee	
Į √ F	Responsible Official	/Authorized Contact Signa	ature 🖸 Appropriat	e Number of Copies of App	lication [.E. Seal (if re	quired)	
	ng kanada parkeras.		GENERAL INFO	ORMATION				
Legal Corporate/Owner Nai	me:	Atlantic Coast Pipeline, L	LLC					
Site Name: Norhampton (Compressor Station		-					
Site Address (911 Address) L	ine 1:	718 Forest Rd						
Site Address Line 2:								
City: Pleasant Hill				State: North Caroli	na			
Zip Code:	27866			County: Northampto	n			
		sa santilana terung	CONTACT INFO	ORMATION				
Permit/Technical Contact:				Facility/Inspection Conta	ict:			
Name/Title: Laurence A. L	abrie			Name/Title:				
Mailing Address Line 1:	5000 Dominion Bo	oulevard		Mailing Address Line 1:				
Mailing Address Line 2:	2 NE			Mailing Address Line 2:				
City: Glen Allen	State:	VA Zip Co	de: 23060	City:	State:		Zip Code:	
Phone No. (area code)	804-273-3075	Fax No. (area code)		Phone No. (area code)		Fax No. (are	ea code)	
Email Address:	laurence.a.labrie@	dominionenergy.com		Email Address:				
Responsible Official/Author	rized Contact:			Invoice Contact:				
Name/Title: Leslie Hartz				Name/Title: Richard B G	angle			
Mailing Address Line 1:	707 E. Main Stree	t		Mailing Address Line 1:	5000 Dominio	n Boulevard		
Mailing Address Line 2:				Mailing Address Line 2:	2 NE			
City: Richmond	State:	VA Zip C	ode: 23219	City: Glen Allen	State:	VA	Zip Code:	23060
Phone No. (area code)	804-771-4468	Fax No. (area code)		Phone No. (area code)	804-273-2814	Fax No. (are	a code)	
Email Address:	leslie.hartz@domi			Email Address:	richard.b.gang	le@dominion	energy.com	
	Burt Congress		PLICATION IS BE					
☑ N	ew Non-permitted	Facility/Greenfield	Modification of Fa		Rene	ewal with Mod	ification	
		3000 - Control -	☐ Renewal (T\					
				APPLICATION (Chec				
☐ General ☑	Small	Prohibitory Small		ynthetic Minor	☐ Title V			
\$5.40° (5)			ILITY (Plant Site	INFURMATION				
Describe nature of (plant site) Proposed new (greenfield) na		acility ID No. : TBD						
1 Toposed New (greenheid) Na	tarat gas pipeline e	ompressor station.						
D.t Olo (NAIOO O - I	4000/400040			Course t/Danvious Ais Dans	:4 N.o.	N/A	Expiration Date:	
Primary SIC/NAICS Code:	4922/486210	20 E		Current/Previous Air Perm Longitude:	-77.505712		Expliation Date.	
Facility Coordinates: Does this application contains	Latitude:	****	***If you place	e contact the DAQ Regio			a this application	***
data?	in confidential	YES □ NO ☑	See Instruction	•	nai Onice prior	to submitting	g tins application	!•
		PERSON O	R FIRM THAT PR	EPARED APPLICAT	ON			
Person Name:	Robert Sawyer			Firm Name: Environment		anagement		
Mailing Address Line 1:	180 Admiral Cochi	rane Dr	1	Mailing Address Line 2:	Suite 400	anagomon		
City: Annapolis	100 / tarimar occin	State: MD		Zip Code:		County:	Anne Arundel	
Phone No. (area code)	410-266-0006	Fax No. (area code)		Email Address:	robert.sawyer@			
(aloa coac)				ICIAL/AUTHORIZED				
Name (typed):	Leslie Hartz			Title: VP Pipeline				1000000 100000000000000000000000000000
X Signature(Blue Ink):		1//		Date:				
		Hoy		4/13/1	<i></i>			
		Attach	Additional She	ets As Necessary				

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

REVISED 04/10/07

A2

	EMISSION SOURCE LISTING: New, Mod	dified, Previously Unp	ermitted, Replaced, Deleted	
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE	
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION	
	Equipment To Be ADDED By This Applica	ation (New, Previously	/ Unpermitted, or Replacement)	
CT-01	Taurus 70-10802S Compressor Turbine	CT-01-SCR	Selective Catalyst Reduction	
	· ·	CT-01-OC	Oxidation Catalyst	
CT-02	Centaur 50-6200LS Compressor Turbine	CT-02-SCR	Selective Catalyst Reduction	
	·	CT-02-OC	Oxidation Catalyst	
CT-03	Centaur 40-4700S Compressor Turbine	CT-03-SCR	Selective Catalyst Reduction	
		CT-03-OC	Oxidation Catalyst	
EG-01	Caterpillar G3516B Emergency Generator	N/A		
EG-02	Generac SG100 Emergency Generator	N/A		
WH-01	Hurst LPW-G-125-60W Hot Water Boiler	N/A		
TK-1	Pipeline Liquids Storage Tank	N/A		
TK-2	Hydrocarbon Waste Tank	N/A		
TK-3	Ammonia Tank	N/A		
TK-4	Odorant Tank	N/A		
Fug-01	Fugitive Leaks - Blowdowns	N/A		
Fug-02	Fugitive Leaks - Piping	N/A		
	Frieting Demnitted Famines and	To Do MODIEIED D	by This Application	
NI/A	Existing Permitted Equipment	TO BE MICHIFIED B	This Application	
N/A				
	+			
	Equipment To Be D	ELETED By This Ap	plication	
N/A				
	+			
	112/r\ ADDI IC	ABILITY INFORMA	TION	A 3
ls your facility subject	to 40 CFR Part 68 "Prevention of Accidental Releases" - \$			<u> </u>
	n detail how your facility avoided applicability:		ect to regulation under this Subpart will be	
	e aqueous ammonia stored in TK-3 (exempt from pe			
	ct to 112(r), please complete the following:	mining) will have an allill	ionia concentration of 1655 than 2070.	
u voui iaciilly is ouble	STOLICAL DIEASE COMOREE INC. IONOWING			

If submitted, RMP submittal date:

A. Have you already submitted a Risk Management Plan (RMP) to EPA Pursuant to 40 CFR Part 68.10 or Part 68.150? Specify required RMP submittal date: ___

B. Are you using administrative controls to subject your facility to a lesser 112(r) program standard? If yes, please specify:

Yes

REVISED 12/01/01 NCD	ENR/Division of Air C	Quality - Applica	ation for Air F	Permit to Con	struct/Opera	te		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	CT-01	-
Taurus 70-10802S Compressor Turbine					EVICE ID NO		CT-01-SCR	and CT-01-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-01	
DESCRIBE IN DETAILTHE EMISSION SOURCE I	PROCESS (ATTACH F	LOW DIAGRAM	Л):		,	, , ,		
Natural gas fired compressor turbine used to boost	•		-	e.				
TYPE OF EMISSION SOU	JRCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 (ON THE FOLL	OWING PAG	ES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking (Form B4)		☐ Manufac	t. of chemicals	s/coatings/inks	(Form B7)	
☑ Int.combustion engine/generator (Form B2)	☐ Coating/finishin	g/printing (Form	B5)	☐ Incinerat	ion (Form B8)			
☐ Liquid storage tanks (Form B3)	Storage silos/bi	ins (Form B6)		Other (Fo	orm B9)			
START CONSTRUCTION DATE: April 20	17 OPERATION DATE	: No	vember 2018	DATE MANU	FACTURED:		2016 or Later	r
MANUFACTURER / MODEL NO.:	Solar Turbines Tau	rus 70-10802S	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAI	RT?): Yes, KKKK NE	SHAP (SUBPAR	RT?): No	MACT (SUBP	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DE			IN-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC	K EMISSION:	S UNDER NO	RMAL OPERA	ATION:	<20	% OPACITY
CRITERIA /	AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOL	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	 ;
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
SULFUR DIOXIDE (SO2)	AP-42	0.33	1.43	0.33	1.43	0.33	1.43	
NITROGEN OXIDES (NOx)		Mfg	1.91	8.35	3.41	14.95	1.91	8.35
CARBON MONOXIDE (CO)		Mfg	2.99	13.08	7.33	32.11	2.99	13.08
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.18	0.78	0.33	1.46	0.18	0.78
LEAD								1
OTHER								1
HAZARDOUS	S AIR POLLUTAN	T EMISSION	IS INFORM	ATION FO	R THIS SO	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00002	0.0001	0.00003	0.0001	0.00002	0.0001
Acetaldehyde	75-07-0	AP-42	0.002	0.01	0.003	0.01	0.002	0.01
Acrolein	107-02-8	AP-42	0.0003	0.001	0.0005	0.002	0.0003	0.001
Benzene	71-43-2	AP-42	0.0005	0.002	0.001	0.004	0.0005	0.002
Ethylbenzene	100-41-4	AP-42	0.001	0.01	0.003	0.01	0.001	0.01
Formaldehyde	50-00-0	Mfg.	0.11	0.50	0.23	0.99	0.11	0.50
Naphthalene	91-20-3	AP-42	0.0001	0.0002	0.0001	0.0004	0.0001	0.0002
РАН		AP-42	0.0001	0.0004	0.0002	0.001	0.0001	0.0004
TOXIC AI	R POLLUTANT E	MISSIONS II	NFORMAT	ION FOR 1	HIS SOUR	CE		
INDIC	CATE EXPECTED ACT	UAL EMISSION	IS AFTER CO	NTROLS / LIN	/ITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day	l l	b/yr
1,3-Butadiene	106-99-0	AP-42	0.00	0002		004		0.15
Acetaldehyde	75-07-0	AP-42	0.0	002	0.	04	1;	3.78
Acrolein	107-02-8	AP-42	0.0	003	0.	.01	2	2.20
Ammonia	7664-41-7	Mfg.	1.	.32	31	.68	11,5	563.20
Benzene	71-43-2	AP-42	0.0	005		.01		1.13
Formaldehyde	50-00-0	Mfg.	0.	.11	2.	72	99	92.03
Toluene	108-88-3	AP-42	0.0	005	0.	12	44.78	
Xylene	1330-20-7	AP-42	0.0	003	0.	.06	2:	2.05
Attachments: (1) emissions calculations and supporting do	cumentation; (2) indicate a	all requested state	and federal enfo	orceable permit	imits (e.g. hours	s of operation, er	mission rates) a	nd describe how
these are monitored and with what frequency; and (3) desc	ribe any monitoring device	es, gauges, or test	ports for this so	urce.	-		ŕ	

REVISED 12/01/01 NCDENR/I	Division of Air	Quality - Applica	tion for Air F	Permit to Con	struct/Operat	te		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	CT-01	
Taurus 70-10802S Compressor Turbine, continue	d			CONTROL D	EVICE ID NO	D(S):	CT-01-SCR a	and CT-01-OC
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STAC	K) ID NO(S):	EP-01	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCE Natural gas fired compressor turbine used to boost the pr	•	•		e.				
TYPE OF EMISSION SOURCE	CHECK AND	COMPLETE APP	ROPRIATE F	ORM B1-B9 (N THE FOLL	OWING PAG	ES):	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking	(Form B4)			t. of chemical	s/coatings/ink	s (Form B7)	
		ing/printing (Form /bins (Form B6)	B5)	☐ Incinera	tion (Form B8) orm B9))		
START CONSTRUCTION DATE: April 2017 OP	ERATION DAT	ΓE: No	vember 2018	DATE MANU	JFACTURED:		2016 or Later	,
	ar Turbines Ta		1	OP. SCHEDU			K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Y	es, KKKK N	ESHAP (SUBPAR	T?): No	MACT (SUBP	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB			N-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STACK	EMISSIONS	UNDER NOR	MAL OPERA	TION:	<20	% OPACITY
CRITERIA AIR F	POLLUTAN	T EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42				,		
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See	Form B, Pag	e 1, for criter	ria pollutant t	otals for this	source
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	1					
LEAD		_						
OTHER			1					
HAZARDOUS AIR	POLLUTA	NT EMISSION	IS INFORM	NATION FO	R THIS SC	URCE		
		SOURCE OF	EXPECTE	ED ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide	75-56-9	AP-42	0.001	0.005	0.002	0.01	0.001	0.005
Toluene	108-88-3	AP-42	0.005	0.02	0.010	0.04	0.005	0.02
Xylene	1330-20-7	AP-42	0.003	0.01	0.005	0.02	0.003	0.01
TOXIC AIR PO	LLUTANT	EMISSIONS II	NFORMAT	ION FOR T	HIS SOUR	CE		
INDICATE E	XPECTED AC	CTUAL EMISSION	S AFTER CO	NTROLS / LIM	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lk	o/hr	lb/	'day	lk	b/yr
				See Form	B, Page 1, fo	r TAP totals f	or this source	,
Attachments: (1) emissions calculations and supporting documentat these are monitored and with what frequency; and (3) describe any	,			•	its (e.g. hours of	operation, emis	sion rates) and c	lescribe how

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

EVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate						
Taurus 70-10802S Compress	or Turbine	EN	MISSION SOURCE ID NO): CT-	01	
		cc	ONTROL DEVICE ID NO	(S): CT-	01-SCR and CT-	-01-OC
		ΕN	MISSION POINT (STACK	01		
☐ EMERGENCY	☐ SPACE HEAT	<u>.</u> Т	☐ ELECTRICAL GENI	ERATION		
PEAK SHAVER	☑ OTHER (DES	SCRIBE): Na	atural Gas Compressor Tu	urbine		
N/A ANT	ICIPATED ACTUAL	L HOURS OF OPE	ERATION AS PEAK SHA	VER (HRS/YR):	N/A	
horsepower output ISO						
☐ DIESEL ENGINE	UP TO 600 HP	☐ DIESEL EN	GINE GREATER THAN 6	00 HP	DUAL FUEL EN	IGINE
: Natural Gas Compress	sor Turbine		(complete below)			
RN 🗹 LEAN BURN			,			
TIONS INJECTION TIME	NG RETARD	☐ PREIGNIT	TION CHAMBER COMBL	ISTION	OTHER	
BINE (complete below)	NATURAL GA	AS PIPELINE COM	IPRESSOR OR TURBIN	E (complete belo	ow)	
□ OIL ENG	SINE TYPE: 2	2-CYCLE LEAN BU	JRN	AN 🗹 TU	RBINE	
	□ 4	4-CYCLE RICH BU	RN 🗌 OTHER (DE	SCRIBE):		
☑ SIMPLE CON	NTROLS:	COMBUSTION MO	DIFICATIONS (DESCRIE	3E):		
☐ COMBINED NO	NSELECTIVE CATA	ALYTIC REDUCTION	ON SELECTIVE	CATALYTIC RE	EDUCTION 🗹	
TEAM INJECTION CLE	EAN BURN AND PR	RECOMBUSTION	CHAMBER 🗌 I	JNCONTROLLE	D 🗆	
FUEL USAG	SE (INCLUDE S	TARTUP/BAC	KUP FUEL)			
	MAXI	IMUM DESIGN	RI	EQUESTED CAI	PACITY	
UNITS	CAPACITY (UNIT/HR) LIMITATION (UNIT/HR)				IT/HR)	
MMBtu	96.00 N/A					
<u> </u>						
FUEL CHARACTERIS	TICS (COMPLE	ETE ALL THAT	ARE APPLICABLE	<u> </u>		
BTU/UNIT		UNITS		(% BY WEIGH	HT)	
1,020		scf		0.0005		
MANUEACTURERIO			DO (IE AVAIL ADLE)			
					T =	
_						
hour	hour	hour	hour	hour	MME	3tu
	EMERGENCY PEAK SHAVER N/A N/A Inorsepower output ISO DIESEL ENGINE Natural Gas Compress N LEAN BURN TIONS INJECTION TIMI BINE (complete below) OIL SIMPLE COMBINED COMBINED NO TEAM INJECTION LEAN-PREMIX FUEL USAG UNITS MMBtu FUEL CHARACTERIS BTU/UNIT 1,020 MANUFACTURER'S NOX 3.20 hour	EMERGENCY SPACE HEAR PEAK SHAVER OTHER (DES N/A ANTICIPATED ACTUA Thorsepower output ISO DIESEL ENGINE UP TO 600 HP Natural Gas Compressor Turbine NATURAL G INJECTION TIMING RETARD BINE (complete below) NATURAL G SIMPLE CONTROLS: COMBINED NONSELECTIVE CATE CITEAM INJECTION CLEAN BURN AND PR LEAN-PREMIX and oxidat FUEL USAGE (INCLUDE S MAX UNITS CAPA MMBtu FUEL CHARACTERISTICS (COMPLIA BTU/UNIT 1,020 MANUFACTURER'S SPECIFIC EMIS NOX O 3.20 5.30 hour hour	ETaurus 70-10802S Compressor Turbine EMERGENCY SPACE HEAT PEAK SHAVER OTHER (DESCRIBE): Na N/A ANTICIPATED ACTUAL HOURS OF OPE Prosepower output ISO DIESEL ENGINE UP TO 600 HP DIESEL ENG NATURAL GAS COMPRESSOR TURBINE NATURAL GAS PIPELINE COM DIL ENGINE TYPE: 2-CYCLE LEAN BUSTION ENGINE COMBINED NONSELECTIVE CATALYTIC REDUCTION CHEAN-PREMIX AND PRECOMBUSTION LEAN-PREMIX AND PREMIX AND PREMIX AND PREMIX AND PREMIX AND	EMISSION SOURCE ID NO CONTROL DEVICE ID NO EMISSION POINT (STACK EMERGENCY SPACE HEAT ELECTRICAL GENI PEAK SHAVER OTHER (DESCRIBE): Natural Gas Compressor TU N/A ANTICIPATED ACTUAL HOURS OF OPERATION AS PEAK SHAV Chorsepower output ISO DIESEL ENGINE UP TO 600 HP DIESEL ENGINE GREATER THAN 6 NATURAL GAS Compressor Turbine (complete below) NATURAL GAS PIPELINE COMPRESSOR OR TURBIN DIL ENGINE TYPE: 2-CYCLE LEAN BURN OTHER (DE CONTROLS: COMBUSTION MODIFICATIONS (DESCRIE NONSELECTIVE CATALYTIC REDUCTION SELECTIVE CLEAN BURN AND PRECOMBUSTION CHAMBER OF INDICATIONS LEAN-PREMIX and oxidation catalyst FUEL USAGE (INCLUDE STARTUP/BACKUP FUEL) MAXIMUM DESIGN RI CAPACITY (UNITHR) L MMBtu 96.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE BTU/UNIT UNITS 1,020 Scf MANUFACTURER'S SPECIFIC EMISSION FACTORS (IF AVAILABLE) NOX CO PM PM10 3.20 5.30 1.92 1.92	EMISSION SOURCE ID NO: CT-	EMISSION SOURCE ID NO:

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

 $\overline{C3}$ NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate REVISED 12/01/01 AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM MUST BE SEALED BY A PROFESSIONAL ENGINNER (P.E.) LICENSED IN NORTH CAROLINA. CONTROL DEVICE ID NO: CT-01-SCR and CT-01-OC CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): EMISSION POINT (STACK) ID NO(S): POSITION IN SERIES OF CONTROLS UNITS 1 MANUFACTURER: MODEL NO: MANUFACTURE DATE: PROPOSED OPERATION DATE: November 2018 **OPERATING SCENARIO:** PROPOSED CONSTRUCTION DATE: 1 of 1 TYPF. **AFTERBURNER** REGENERATIVE THERMAL OXIDATION RECUPERATIVE THERMAL OXIDATION CATALYTIC OXIDATION Х METHOD OF DETECTING WHEN CATALYST NEEDS REPLACMENT: EXPECTED LIFE OF CATALYST (YRS): TBD CATALYST MASKING AGENT IN AIR STREAM: HALOGEN SILICONE PHOSPHOROUS COMPOUND HEAVY METAL SULFUR COMPOUND OTHER TBD CATALYST VOL (FT³): TBD TYPE OF CATALYST: TBD VELOCITY THROUGH CATALYST (FPS): SCFM THROUGH CATALYST: DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO OTHER CONTROL DEVICES AND SOURCES, AND ATTACH DIAGRAM OF SYSTEM: Selective Catalyst Reduction and Oxidation Catalyst POLLUTANT(S) COLLECTED: NO. CO VOC Formaldehyde BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIENCY: 44 % 80 % 50 50 OVERALL SYSTEM EFFICIENCY: **EFFICIENCY DETERMINATION CODE:** TOTAL EMISSION RATE (LB/HR): OUTLET TEMPERATURE (°F): PRESSURE DROP (IN. H2O): MIN MAX MIN MAX INLET TEMPERATURE (°F): MIN RESIDENCE TIME (SECONDS): MAX COMBUSTION TEMPERATURE (°F): INLET AIR FLOW RATE (ACFM): (SCFM): COMBUSTION CHAMBER VOLUME (FT3): INLET MOISTURE CONTENT (%): % EXCESS AIR: CONCENTRATION (ppmv) **INLET** OUTLET TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): AUXILIARY FUEL USED: MAXIMUM ANNUAL FUEL USE: UNITS: MAXIMUM HOURLY FUEL USE: UNITS: ACTUAL ANNUAL FUEL USE: UNITS: **ACTUAL HOURLY FUEL USE:** UNITS: DESCRIBE METHOD USED TO INCREASE MIXING: DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEMPERATURE: DESCRIBE TEMPERATURE MONITORING DEVICES AND PROCEDURES: STACK TESTING PORTS: G NO G YES (INLET AND OUTLET) DESCRIBE MAINTENANCE PROCEDURES: DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO THE CONTROL SYSTEM: ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S):

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDEN	IR/Division of Air C	Quality - Applica	ition for Air F	Permit to Con	struct/Operat	e		В
EMISSION SOURCE DESCRIPTION:	MISSION SOURCE DESCRIPTION:						CT-02	
Centaur 50-6200LS Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-02-SCR a	and CT-02-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-02	
DESCRIBE IN DETAILTHE EMISSION SOURCE PR	OCESS (ATTACH F	LOW DIAGRAN	/ 1):	II.	•			
Natural gas fired compressor turbine used to boost th	e pressure of natura	l gas in a transm	nission pipelin	e.				
TYPE OF EMISSION SOUR	CE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 C	N THE FOLL	OWING PAG	ES):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking (F	Form B4)			. of chemicals	coatings/inks	(Form B7)	
☑ Int.combustion engine/generator (Form B2)	☐ Coating/finishing	g/printing (Form	B5)	_	on (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/bir	ns (Form B6)		Other (Fo	orm B9)			
START CONSTRUCTION DATE: April 2017	OPERATION DATE	: No	vember 2018	DATE MANU	FACTURED:		2016 or Later	ſ
MANUFACTURER / MODEL NO.:	Solar Turbines Cent	aur 50-6200LS	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART	?): Yes, KKKK NE	SHAP (SUBPAR	RT?): No	MACT (SUBP	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-	FEB 25 MAR-I	1	N-AUG 25	SEP-NOV				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA AII	R POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOL	IRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.20	5.26	1.20 5.26 1.20			5.26
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
SULFUR DIOXIDE (SO2)		AP-42	0.20	0.89	0.20	0.894	0.20	0.89
NITROGEN OXIDES (NOx)		Mfg	1.19	5.20	2.13	9.31	1.19	5.20
CARBON MONOXIDE (CO)		Mfg	1.87	8.19	4.57	20.04	1.87	8.19
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.11	0.48	0.20	0.89	0.11	0.48
LEAD								
OTHER								
HAZARDOUS A	NIR POLLUTAN	T EMISSION	IS INFORM	MATION FO	R THIS SC	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00001	0.00005	0.00002	0.0001	0.00001	0.00005
Acetaldehyde	75-07-0	AP-42	0.001	0.005	0.002	0.01	0.001	0.005
Acrolein	107-02-8	AP-42	0.0002	0.001	0.0003	0.001	0.0002	0.001
Benzene	71-43-2	AP-42	0.0003	0.001	0.001	0.003	0.0003	0.001
Ethylbenzene	100-41-4	AP-42	0.0008	0.004	0.002	0.01	0.001	0.004
Formaldehyde	50-00-0	Mfg.	0.08	0.33	0.15	0.66	0.08	0.33
Naphthalene	91-20-3	AP-42	0.00003	0.0002	0.0001	0.0003	0.00003	0.0002
PAH		AP-42	0.0001	0.0003	0.0001	0.001	0.0001	0.0003
	POLLUTANT E					CE		
INDICAT	E EXPECTED ACT	UAL EMISSION	S AFTER CO	NTROLS / LIN	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/d	day	lk	o/yr
1,3-Butadiene	106-99-0	AP-42	0.0	0001	0.0	003	0	.10
Acetaldehyde	75-07-0	AP-42	0.0	001	0.	03	9	.23
Acrolein	107-02-8	AP-42	0.0	0002	0.0	004	1	.48
Ammonia	7664-41-7	Mfg.	0.	.82	19	.63	7,1	65.68
Benzene	71-43-2	AP-42	0.0	0003	0.0	800	2	2.77
Formaldehyde	50-00-0	Mfg.		.08		82	664.78	
Toluene	108-88-3	AP-42		003		12		4.78
Xylene	1330-20-7	AP-42		002		06		2.05
Attachments: (1) emissions calculations and supporting documents	nentation; (2) indicate a	all requested state	and federal enf	orceable permit	imits (e.g. hours	of operation, e	mission rates) a	nd describe how

these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

REVISED 12/01/01	NCDENR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ite		
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	CT-02	-
Centaur 50-6200LS Compressor Tui	rbine			CONTROL D	EVICE ID NO	(S):	CT-02-SCR a	nd CT-02-OC
OPERATING SCENARIO 1 of 1	•			1	OINT (STAC	. ,	EP-02	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS (ATTACH F	LOW DIAGRA	VI):			, ,		
Natural gas fired compressor turbine used	to boost the pressure of natura	al gas in a transn	nission pipeli	ne.				
TYPE OF EMISSION	ON SOURCE (CHECK AND C	OMPLETE APP	ROPRIATE	FORM B1-B9	ON THE FOLI	OWING PAG	ES):	
Coal,wood,oil, gas, other burner (Form E	31) Woodworking (F	orm B4)		☐ Manufac	t. of chemicals	s/coatings/inks	(Form B7)	
☑ Int.combustion engine/generator (Form B	32) Coating/finishing	printing (Form I	35)	☐ Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/bin	s (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DATE A	pril 2017 OPERATION DATE:	No	vember 201	B DATE MANU	FACTURED:		2016 or Later	
MANUFACTURER / MODEL NO.:	Solar Turbines Centa	aur 50-6200LS	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes, KKKK NE	SHAP (SUBPAR	RT?): No	MACT (SUBP	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR-I	MAY 25 JL	JN-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERA	,	VISIBLE STAC				_	<20	% OPACITY
CRITI	ERIA AIR POLLUTANT	EMISSIONS	S INFORM	ATION FOR	THIS SOL	JRCE		
		SOURCE OF	EXPECT	ED ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CON	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM	10)	Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See	e Form B, Pag	e 1, for criter	a pollutant to	tals for this s	ource
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC	;)	Mfg						
LEAD								
OTHER								
HAZAR	RDOUS AIR POLLUTAN	IT EMISSION	NS INFOR	MATION FO	OR THIS S	OURCE		
		SOURCE OF	EXPECT	ED ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CON	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS	NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide	75-56-9	AP-42	0.001	0.003	0.002	0.01	0.001	0.003
Toluene	108-88-3	AP-42	0.003	0.02	0.01	0.03	0.003	0.02
Xylene	1330-20-7	AP-42	0.002	0.01	0.003	0.01	0.002	0.01
TO	XIC AIR POLLUTANT E	MISSIONS I	NFORMA [®]	TION FOR T	THIS SOUP	RCE		
	INDICATE EXPECTED ACT	TUAL EMISSION	IS AFTER C	ONTROLS / LII	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	I	b/hr	lb/	day	lb)/yr
				See Form I	B, Page 1, for	TAP totals fo	r this source	
Attachments: (1) emissions calculations and supp					limits (e.g. hour	s of operation, er	mission rates) an	d describe how
these are monitored and with what frequency; and	usi describe any monitorina devica	es dauges ortest	norrs for this s	ource				

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

NCDENR/Division of Air	Quality	y - Application for Air Perm	it to Construct/Operate			B2		
Centaur 50-6200LS Compres	ssor Tui	rbine	EMISSION SOURCE ID N	O:	CT-02			
			CONTROL DEVICE ID NO	ROL DEVICE ID NO(S): CT-02-SCR and				
			EMISSION POINT (STACK) ID NO(S): EP-02					
☐ EMERGENCY		SPACE HEAT	☐ ELECTRICAL GEN	IERATION				
PEAK SHAVER	☑ (OTHER (DESCRIBE):	Natural Gas Compressor Turbine					
N/A AN	TICIPAT	TED ACTUAL HOURS OF O	PERATION AS PEAK SHA	AVER (HRS/\	/R): N/A			
horsepower output ISO				•	•			
☐ DIESEL ENGINE	E UP TO	O 600 HP DIESEL E	NGINE GREATER THAN	600 HP	☐ DUAL FUEL	ENGINE		
: Natural Gas Compres	sor Turk	bine	(complete below)					
N 🗹 LEAN BURN								
TIONS INJECTION TIM	ING RE	TARD PREIGI	NITION CHAMBER COMB	USTION	☐ OTHER _			
BINE (complete below)	١	NATURAL GAS PIPELINE CO	OMPRESSOR OR TURBI	NE (complete	below)			
□ OIL EN 0	GINE T	YPE: 2-CYCLE LEAN	BURN	EAN 🗹	TURBINE			
		☐ 4-CYCLE RICH	BURN	ESCRIBE): _		_		
☑ SIMPLE CO	NTROL	.S: COMBUSTION N	MODIFICATIONS (DESCR	IBE):				
☐ COMBINED NO	NSELE	ECTIVE CATALYTIC REDUC	TION SELECTIV	E CATALYTI	C REDUCTION	7		
TEAM INJECTION CL	EAN BU	URN AND PRECOMBUSTIO	N CHAMBER	UNCONTRO	LLED 🗆			
FUEL USAG	GE (IN	ICLUDE STARTUP/BA	CKUP FUEL)					
		MAXIMUM DESIGN	F	REQUESTED	CAPACITY			
UNITS		CAPACITY (UNIT/HR)	LIMITATION (UNIT/HR)					
MMBtu		60.0		N/A				
FUEL CHARACTERIS	STICS	(COMPLETE ALL TH	AT ARE APPLICABL	E)				
BTU/UNIT		UNITS		(% BY W	EIGHT)			
1,020		scf		0.00	05			
MANUEACTURERIO	ODEC	NEIO EMIGNION EAGT	CODO (IE AVIAII ADI E	-\				
			-			maldehyde		
 						0.00288		
hour	ho	our hour	hour	houi	ſ	MMBtu		
	EMERGENCY PEAK SHAVER N/A N/A NOS DIESEL ENGINI STONS INJECTION TIME BINE (complete below) OIL SIMPLE COMBINED COMBINED TEAM INJECTION LEAN-PREMIX FUEL USAGE BTU/UNIT 1,020 MANUFACTURER'S NOX 1.98 hour	EMERGENCY PEAK SHAVER DIESEL ENGINE UP TO Natural Gas Compressor Tur NIONS INJECTION TIMING RE BINE (complete below) COMBINED NONSELE STEAM INJECTION CLEAN BI LEAN-PREMIX FUEL USAGE (IN UNITS MMBtu FUEL CHARACTERISTICS BTU/UNIT 1,020 MANUFACTURER'S SPECE NOX C 1.98 3.3 hour hour	E Centaur 50-6200LS Compressor Turbine SPACE HEAT	CONTROL DEVICE ID NO EMISSION POINT (STACE PEAK SHAVER PEAK SHAVER OTHER (DESCRIBE): Natural Gas Compressor T N/A ANTICIPATED ACTUAL HOURS OF OPERATION AS PEAK SHA Shorsepower output ISO DIESEL ENGINE UP TO 600 HP Natural Gas Compressor Turbine NATURAL GAS PIPELINE COMPRESSOR OR TURBIN INJECTION TIMING RETARD PREIGNITION CHAMBER COMB BINE (complete below) NATURAL GAS PIPELINE COMPRESSOR OR TURBIN COMBINED OIL BNGINE TYPE: COMBUSTION MODIFICATIONS (DESCR NONSELECTIVE CATALYTIC REDUCTION SELECTIVE CLEAN BURN AND PRECOMBUSTION CHAMBER TOMB THE COMPRESSOR OR TURBIN TEAM-PREMIX AND SELECTIVE CATALYTIC REDUCTION SELECTIVE CLEAN BURN AND PRECOMBUSTION CHAMBER MAXIMUM DESIGN CAPACITY (UNIT/HR) MMBtu GO.0 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABL BTU/UNIT UNITS MANUFACTURER'S SPECIFIC EMISSION FACTORS (IF AVAILABLE NOX CO PM PM10 1.98 3.30 1.20 1.20 1.20	EMISSION SOURCE ID NO: CONTROL DEVICE ID NO(S): EMISSION POINT (STACK) ID NO(S): DIESEL ENGINE GNEATER THAN 600 IP DIESEL ENGINE UP TO 600 IP DIESEL ENGINE GREATER THAN 600 IP DIESEL ENGINE	EMISSION SOURCE ID NO: CT-02		

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 12/01/01 NCDENR/Div	ision of Air Quali	ty - Application for Air	Permit to Co	onstruct/Operate			C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FOR	RM MUST BE SEA	LED BY A PROFESSIO	ONAL ENGIN	NER (P.E.) LICENS	SED IN	NORTH CAROL	INA.
ONTROL DEVICE ID NO: CT-02-SCR and CT-02-OC	CONTROLS EM	MISSIONS FROM WHIC	H EMISSION	SOURCE ID NO(S	·):	CT-02	
MISSION POINT (STACK) ID NO(S): EP-02	POSITION IN S	ERIES OF CONTROLS	1	NO.	OF	UNI	TS 1
ANUFACTURER:	MOD	DEL NO:					
ANUFACTURE DATE:	PRO	POSED OPERATION D)ATE: Nove	mber 2018			
OPERATING SCENARIO:	PRO	POSED CONSTRUCTI	ON DATE:	April 2017			
1 of 1							
YPE: AFTERBURNER REGENERATIVE TH	HERMAL OXIDAT	ION	RECL	JPERATIVE THER	MAL OX	(IDATION	
X CATALYTIC OXIDA	TION						
XPECTED LIFE OF CATALYST (YRS): TBD		ETECTING WHEN CAT				TBD	
CATALYST MASKING AGENT IN AIR STREAM: HALOGEN	SILICONE R COMPOUND	PHOSPHOROUS CO	MPOUND	HEAVY METAL			
Ī		OTHER		NONE	TDD		
YPE OF CATALYST: TBD CATALYST VC CCFM THROUGH CATALYST:	DE (III). IBD	VELOCITY	HROUGH CA	ATALYST (FPS):	TBD		
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO C	THER CONTROL	DEVICES AND SOUR	CES AND A	TTACH DIAGRAM	OF SYS	TEM:	
Selective Catalyst Reduction and Oxidation Catalyst	LIN CONTINOL	221102071110 000111	5_5, AND A		2. 3.0		
POLLUTANT(S) COLLECTED:	NO _x	СО		VOC		Formaldehyde	1
BEFORE CONTROL EMISSION RATE (LB/HR):					-		<u> </u>
CAPTURE EFFICIENCY:		<u> </u>	 %		- %	-	 %
CONTROL DEVICE EFFICIENCY:	44		—— [/]	50	- %	50	— %
					_		_
OVERALL SYSTEM EFFICIENCY: EFFICIENCY DETERMINATION CODE:		%	%		_%	-	%
					-		
OTAL EMISSION RATE (LB/HR) :		0.171 57 751 1050 17					
PRESSURE DROP (IN. H2O): MIN MAX		OUTLET TEMPERAT	. ,	MIN		MAX	
NLET TEMPERATURE (°F): MIN MAX		RESIDENCE TIME (S	•) <u> </u>			
NLET AIR FLOW RATE (ACFM): (SCFM):		COMBUSTION TEMP		•			
COMBUSTION CHAMBER VOLUME (FT³):		INLET MOISTURE C					
6 EXCESS AIR:		CONCENTRATION (INLET		OUTLE	=1
AUXILIARY FUEL USED:		TOTAL MAXIMUM FI	,	MILLION BTU/HR):			
MAXIMUM ANNUAL FUEL USE: UNITS:		MAXIMUM HOURLY			UNITS		
ACTUAL ANNUAL FUEL USE: UNITS:		ACTUAL HOURLY FO	JEL USE:		UNITS	i:	
DESCRIBE METHOD USED TO INCREASE MIXING:							
DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEM	MPERATURE:						
	=						
DESCRIBE TEMPERATURE MONITORING DEVICES AND PR	OCEDURES:						
STACK TESTING PORTS: G NO G YES (INLET AND O	ITI ET\						
,	J1LL1)						
DESCRIBE MAINTENANCE PROCEDURES:							
ECODIDE ANY ALIVILIA DY MATERIAL O INTRODUCED INTO	THE CONTROL O	CVCTEMA					
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO	THE CONTROLS	DIOIEWI					
ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONT	ROL DEVICE TO	ITS EMISSION SOURC	E(S):				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01	NCDENR/Division of Air Q	uality - Applica	tion for Air P	ermit to Cons	struct/Operate	•		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D:	CT-03	
Centaur 40-4700S Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-03-SCR a	and CT-03-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-03	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FL	OW DIAGRAM)	:		•	, , ,		
Natural gas fired compressor turbine used to be	post the pressure of natural	gas in a transmi	ssion pipeline).				
TYPE OF EMISSION	SOURCE (CHECK AND C	OMPLETE APPI	ROPRIATE FO	ORM B1-B9 O	N THE FOLL	OWING PAGE	 ES):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking (Fo				t. of chemicals		•	
Int.combustion engine/generator (Form B2)	Coating/finishing	printing (Form E	35)	☐ Incinerat	ion (Form B8)	ū	,	
Liquid storage tanks (Form B3)	Storage silos/bin	s (Form B6)		Other (Fo	orm B9)			
START CONSTRUCTION DATE: April	2017 OPERATION DATE:	No	vember 2018	DATE MANU	FACTURED:		2016 or Later	•
MANUFACTURER / MODEL NO.:	Solar Turbines Centa		l .	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	< 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUB	PART?): Yes, KKKK NES	HAP (SUBPAR	Γ?): No N	AACT (SUBPA	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25 MAR-M	AY 25 JUN	I-AUG 25	SEP-NOV 2	25			
EXPECTED ANNUAL HOURS OF OPERATION	l: 8,760	VISIBLE STAC	K EMISSION	S UNDER NO	RMAL OPERA	ATION:	<20	% OPACITY
CRITER	IA AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.02	4.47	1.02	4.47	1.02	4.47
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.02	4.47	1.02	4.47	1.02	4.47
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.02	4.47	1.02 4.47 1.02			4.47
SULFUR DIOXIDE (SO2)		AP-42	0.17	0.76	0.17	0.76	0.17	0.76
NITROGEN OXIDES (NOx)		Mfg	1.01	4.44	5.02	22.01	1.01	4.44
CARBON MONOXIDE (CO)		Mfg	1.66	7.29	6.92	30.31	1.66	7.29
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.09	0.41	0.17	0.76	0.09	0.41
LEAD					-			
OTHER								
HAZARDO	OUS AIR POLLUTAN	T EMISSION	S INFORM	ATION FO	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION		ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	Ī	TROLS / LIMITS)
 HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00001	0.00004	0.00002	0.0001	0.00001	0.00004
Acetaldehyde	75-07-0	AP-42	0.001	0.004	0.002	0.01	0.001	0.004
Acrolein	107-02-8	AP-42	0.0001	0.0006	0.0003	0.001	0.0001	0.001
Benzene	71-43-2	AP-42	0.0003	0.001	0.001	0.002	0.0003	0.001
Ethylbenzene	100-41-4	AP-42	0.001	0.003	0.001	0.01	0.001	0.003
Formaldehyde	50-00-0	Mfg.	0.06	0.27	0.12	0.54	0.06	0.27
Naphthalene	91-20-3	AP-42	0.00003	0.0001	0.0001	0.0002	0.00003	0.0001
PAH	***	AP-42	0.00005	0.0002	0.0001	0.000	0.0000	0.0002
	AIR POLLUTANT EI						0.0000	
11	NDICATE EXPECTED ACT	UAL EMISSION:	S AFTER CO	NTROLS / LIM	IITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day	lk	b/yr
1,3-Butadiene	106-99-0	AP-42	0.00	0001		002		0.08
Acetaldehyde	75-07-0	AP-42	0.0	009	0.	02	7	7.51
Acrolein	107-02-8	AP-42		001		003		.20
Ammonia	7664-41-7	Mfg.		.69		.56		44.40
Benzene	71-43-2	AP-42		003		006	·	2.25
Formaldehyde	50-00-0	Mfg.		062		48		1.00
Toluene	108-88-3	AP-42		003		07		4.42
Xylene	1330-20-7	AP-42		001		03		2.02
Attachments: (1) emissions calculations and supportin								
	, (=) maioale a			point	, 5.9. 110410		atoo, a	

these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate								В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: CT-03				
Centaur 40-4700S Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-03-SCR	and CT-03-OC
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STAC	() ID NO(S):	EP-03	
DESCRIBE IN DETAILTHE EMISSION SOURCE Natural gas fired compressor turbine used to be	•		•	ipeline.				
TYPE OF EMISSION SC	URCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FO	LLOWING PA	(GES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking	(Form B4)			t. of chemical	s/coatings/ink	s (Form B7)	
☑ Int.combustion engine/generator (Form B2)☐ Liquid storage tanks (Form B3)	☐ Coating/finish☐ Storage silos/	ing/printing (Forn /bins (Form B6)	n B5)	B5)				
START CONSTRUCTION DAT April 2017	OPERATION DAT	ΓE: No	vember 2018	DATE MANU	JFACTURED:		2016 or Late	r
MANUFACTURER / MODEL NO.:	Solar Turbines Ce	entaur 40-4700S	EXPECTED	OP. SCHEDU	ILE: 24 HR/DA	Y 7 DAY/W	K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUB	PART?): Yes, KKKK	NESHAP (SUB	PART?): No	MACT (S	UBPART?): N	0		
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25 M	IAR-MAY 25	JUN-AUG	25 SEP-N	IOV 25			
EXPECTED ANNUAL HOURS OF OPERATION	l: 8,760	VISIBLE STAC	K EMISSION	IS UNDER NO	RMAL OPER	ATION:	<20	% OPACITY
CRITERIA	AIR POLLUTAI	NT EMISSION	S INFORM	ATION FO	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42			•			
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)	Mfg	See	Form B, Pag	e 1, for criteri	ia pollutant to	otals for this	source	
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER								
HAZARDOL	JS AIR POLLUTA	ANT EMISSIO	NS INFOR	RMATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	FROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO	.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide	75-56-9	AP-42	0.001	0.003	0.001	0.01	0.001	0.003
Toluene	108-88-3	AP-42	0.003	0.01	0.01	0.02	0.003	0.01
Xylene	1330-20-7	AP-42	0.001	0.01	0.003	0.01	0.001	0.01
								+
TOXIC A	AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE	<u> </u>	
IND	CATE EXPECTED A	CTUAL EMISSIC	NS AFTER C	CONTROLS / L	LIMITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lk	o/hr	lb/	day	I	lb/yr
					B, Page 1, for			
Attachments: (1) emissions calculations and supporting how these are monitored and with what frequency; and					ermit limits (e.g. l	nours of operati	on, emission rat	ies) and describe

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate B2							
Centaur 40-4700S Compress	or Turbine	EMIS	SSION SOURCE ID NO	D: C	T-03		
		CON	TROL DEVICE ID NO	(S): C	T-03-SCR and C	CT-03-OC	
		EMIS	SSION POINT (STACK	() ID NO(S): E	P-03		
☐ EMERGENCY	☐ SPACE HEAT] ELECTRICAL GEN	ERATION			
PEAK SHAVER	☑ OTHER (DESC	CRIBE): Natu	ral Gas Compressor To	urbine			
N/A ANT	ICIPATED ACTUAL	HOURS OF OPER	ATION AS PEAK SHA	VER (HRS/YR	R): N/A		
horsepower output ISO				`	•		
☐ DIESEL ENGINE	UP TO 600 HP	☐ DIESEL ENGI	NE GREATER THAN 6	600 HP [DUAL FUEL I	ENGINE	
: Natural Gas Compress	or Turbine		(complete below)				
RN 🗹 LEAN BURN			· · · · · ·				
TIONS INJECTION TIMI	NG RETARD	☐ PREIGNITIO	ON CHAMBER COMBL	JSTION	OTHER		
BINE (complete below)	NATURAL GAS	S PIPELINE COMP	RESSOR OR TURBIN	IE (complete b	elow)		
□ OIL ENG	INE TYPE: 2-0	CYCLE LEAN BUR	N	EAN 🗹 T	TURBINE		
	□ 4-0	CYCLE RICH BURI	N DTHER (DE	ESCRIBE):			
☑ SIMPLE CON	ITROLS: CO	OMBUSTION MOD	FICATIONS (DESCRI	BE):			
☐ COMBINED NO	NSELECTIVE CATAL	LYTIC REDUCTION	N SELECTIVE	CATALYTIC	REDUCTION [7	
TEAM INJECTION CLE	AN BURN AND PRE	COMBUSTION CH	HAMBER 🗌 I	UNCONTROL	LED 🗆		
ROLLED LEAN-PREMIX and oxidation catalyst							
FUEL USAG	E (INCLUDE ST	ARTUP/BACK	UP FUEL)				
	MAXIM	IUM DESIGN	RI	EQUESTED C	CAPACITY		
UNITS	CAPACI	TY (UNIT/HR)	L	REQUESTED CAPACITY LIMITATION (UNIT/HR) N/A			
MMBtu		51.0		N/A			
FUEL CHARACTERIS	TICS (COMPLET	TE ALL THAT A	ARE APPLICABLE	=)			
				SULFUR C	ONTENT		
BTU/UNIT	l	UNITS		(% BY WEI	GHT)		
1,020		scf		0.0005	5		
	-			•	<u> </u>		
						aldehyde	
4.70	5.70	1.02	1.02	0.16	0.0	00288	
hour	hour	hour	hour	hour	М	IMBtu	
	EMERGENCY PEAK SHAVER N/A ANT Thorsepower output ISO DIESEL ENGINE Natural Gas Compress RN	EMERGENCY SPACE HEAT PEAK SHAVER	EMIS CON EMIS	EMISSION SOURCE ID NO EMISSION POINT (STACK PEAK SHAVER	Centaur 40-4700\$ Compressor Turbine	EMISSION SOURCE ID NO:	

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

 $\overline{C3}$ NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate REVISED 12/01/01 AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM MUST BE SEALED BY A PROFESSIONAL ENGINNER (P.E.) LICENSED IN NORTH CAROLINA. CONTROL DEVICE ID NO: CT-03-SCR and CT-03-OC CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): EMISSION POINT (STACK) ID NO(S): POSITION IN SERIES OF CONTROLS UNITS 1 MANUFACTURER: MODEL NO: MANUFACTURE DATE: PROPOSED OPERATION DATE: November 2018 **OPERATING SCENARIO:** PROPOSED CONSTRUCTION DATE: April 2017 1 of 1 TYPF. **AFTERBURNER** REGENERATIVE THERMAL OXIDATION RECUPERATIVE THERMAL OXIDATION CATALYTIC OXIDATION Х METHOD OF DETECTING WHEN CATALYST NEEDS REPLACMENT: EXPECTED LIFE OF CATALYST (YRS): TBD CATALYST MASKING AGENT IN AIR STREAM: HALOGEN SILICONE PHOSPHOROUS COMPOUND HEAVY METAL SULFUR COMPOUND OTHER TBD CATALYST VOL (FT³): TYPE OF CATALYST: TBD VELOCITY THROUGH CATALYST (FPS): SCFM THROUGH CATALYST: DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO OTHER CONTROL DEVICES AND SOURCES, AND ATTACH DIAGRAM OF SYSTEM: Selective Catalyst Reduction and Oxidation Catalyst POLLUTANT(S) COLLECTED: NO. CO VOC Formaldehyde BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIENCY: 80 % 90 % 50 50 OVERALL SYSTEM EFFICIENCY: **EFFICIENCY DETERMINATION CODE:** TOTAL EMISSION RATE (LB/HR): OUTLET TEMPERATURE (°F): PRESSURE DROP (IN. H2O): MIN MAX MIN MAX INLET TEMPERATURE (°F): MIN RESIDENCE TIME (SECONDS): MAX COMBUSTION TEMPERATURE (°F): INLET AIR FLOW RATE (ACFM): (SCFM): COMBUSTION CHAMBER VOLUME (FT3): INLET MOISTURE CONTENT (%): % EXCESS AIR: CONCENTRATION (ppmv) **INLET** OUTLET TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): AUXILIARY FUEL USED: MAXIMUM ANNUAL FUEL USE: UNITS: MAXIMUM HOURLY FUEL USE: UNITS: ACTUAL ANNUAL FUEL USE: UNITS: **ACTUAL HOURLY FUEL USE:** UNITS: DESCRIBE METHOD USED TO INCREASE MIXING: DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEMPERATURE: DESCRIBE TEMPERATURE MONITORING DEVICES AND PROCEDURES: STACK TESTING PORTS: G NO G YES (INLET AND OUTLET) DESCRIBE MAINTENANCE PROCEDURES: DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO THE CONTROL SYSTEM: ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S):

REVISED 12/01/01 NCDI	ENR/Division of Air Q	of Air Quality - Application for Air Permit to Construct/Operate						В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	O:	EG-01	
Caterpillar G3516B Emergency Generator				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE	•		,					
Natural gas fired emergency generator used to pro	ovide power during em	ergency periods	when the prin	nary source of	power to the f	facility is unava	ailable.	
TYPE OF EMISSION SOU			ROPRIATE F					
Coal,wood,oil, gas, other burner (Form B1)	Woodworking			_		s/coatings/inks	(Form B7)	
☐ Int.combustion engine/generator (Form B2) ☐ Liquid storage tanks (Form B3)	Coating/finishi	O. O.	m B5)	☐ Incinerat	ion (Form B8)			
_ , , ,	Storage silos/l			<u> </u>			0040	
	OPERATION DAT		ı	DATE MANU		D	2016 or La	ter
MANUFACTURER / MODEL NO.: IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	Caterpillar G3516				LE: 100 HR/Y			
PERCENTAGE ANNUAL THROUGHPUT (%): DI	, · · · · · · · · · · · · · · · · · · ·	`	UN-AUG 25	`	ART?): Yes, Z			
EXPECTED ANNUAL HOURS OF OPERATION:	100	VISIBLE STAC				ATION:	~20	% OPACITY
	IR POLLUTANT						~20	70 OI AOITT
Sitt 21 th 17		SOURCE OF	1	D ACTUAL		POTENTIAL	FMSSIONS	3
		EMISSION		ROLS / LIMITS)	(REFORE CONT	TROLS / LIMITS)	I	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	0.638	0.032	0.638	0.032	0.638	0.032
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	0.638	0.032	0.638	0.032	0.638	0.032
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	0.638	0.032	0.638	0.032	0.638	0.032
SULFUR DIOXIDE (SO2)		AP-42	0.008	3.88E-04	0.008	3.88E-04	0.008	3.88E-04
NITROGEN OXIDES (NOx)		Mfg	2.00	0.100	2.00	0.100	2.00	0.100
CARBON MONOXIDE (CO)		Mfg	9.98	0.499	9.98	0.499	9.98	0.499
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	2.16	0.108	2.16	0.108	2.16	0.108
LEAD								
OTHER								
HAZARDOUS	AIR POLLUTAN	T EMISSION	S INFORM	ATION FO	R THIS SC	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	(BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,1,2,2-Tetrachloroethane	79-34-5	AP-42	0.0003	0.00002	0.0003	0.00002	0.0003	0.00002
1,1,2-Trichloroethane	79-00-5	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,1-Dichloroethane	75-34-3	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,2-Dichloroethane	107-06-2	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,2-Dichloropropane	78-87-5	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,3-Butadiene	106-99-0	AP-42	0.004	0.0002	0.004	0.0002	0.004	0.0002
1,3-Dichloropropene	542-75-6	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
2,2,4-Trimethylpentane	540-84-1 R POLLUTANT EI	AP-42	0.004	0.0002	0.004	0.0002 CE	0.004	0.0002
	ATE EXPECTED ACT					<u>CE</u>		
TOXIC AIR POLLUTANT AND CAS NO.	MIE EXI EOTED NOT	EF SOURCE	ı	/hr	1	day		lb/yr
1,1,2,2-Tetrachloroethane	79-34-5	AP-42		003		01		0.03
1,2-Dichloroethane	107-06-2	AP-42		002		00		0.02
1,3-Butadiene	106-99-0	AP-42		004		09		0.38
Acetaldehyde	75-07-0	AP-42		04		86		3.59
Acrolein	107-02-8	AP-42		.04		86		3.60
Benzene	71-43-2	AP-42		009		22		0.90
Benzo(a)pyrene	50-32-8	AP-42		00003		00006		63E-06
Carbon Tetrachloride	56-23-5	AP-42	0.0	003	0.	01		0.03
Attachments: (1) emissions calculations and supporting do	ocumentation; (2) indicate	all requested state	e and federal en	forceable permi	t limits (e.g. hou	rs of operation,	emission rate	s) and describe

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDEN	IR/Division of Air	Quality - Applic	pplication for Air Permit to Construct/Operate					В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	EG-01	
Caterpillar G3516B Emergency Generator				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STAC	() ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTAC	CH FLOW DIAG	RAM):	•				
Natural gas fired emergency generator used to pr	ovide power during	emergency per	iods when the	e primary sour	ce of power to	the facility is	unavailable	
TYPE OF EMISSION SOUR	CE (CHECK AND C	OMPLETE API	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking		-	Manufact. of chemicals/coatings/inks (Form B7)				
☑ Int.combustion engine/generator (Form B2)	☐ Coating/finish	,						
Liquid storage tanks (Form B3)	Storage silos/	o. o.	,	Other (F	,			
START CONSTRUCTION DAT April 2017	OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or La	ter
MANUFACTURER / MODEL NO.:	Caterpillar G3516	3	EXPECTED	OP. SCHEDU	LE: 100 HR/Y	R		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	ART?): Yes, JJJJ	NESHAP (SUBI	PART?): No	MACT (SI	JBPART?): Ye	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DI	EC-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	100	VISIBLE STAC	K EMISSION	S UNDER NO	RMAL OPER	ATION:	<20	% OPACITY
CRITERIA AI	R POLLUTANT	EMISSIONS	S INFORM	ATION FOR	THIS SO	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See F	orm B, Page	1, for criteria	pollutant to	tals for this	source
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER								
HAZARDOUS	AIR POLLUTAI	NT EMISSIO	NS INFORI	MATION FO	OR THIS S	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	. EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde	75-07-0	AP-42	0.04	0.002	0.04	0.002	0.04	0.002
Acrolein	107-02-8	AP-42	0.04	0.002	0.04	0.002	0.04	0.002
Benzene	71-43-2	AP-42	0.01	0.0004	0.01	0.0004	0.01	0.0004
Biphenyl	92-52-4	AP-42	0.00002	0.000001	0.00002	0.000001	0.00002	0.000001
Carbon Tetrachloride	56-23-5	AP-42	0.0003	0.00001	0.0003	0.00001	0.0003	0.00001
Chlorobenzene	108-90-7	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
Chloroform	67-66-3	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
Ethylbenzene	100-41-4	AP-42	0.0005	0.00002	0.00	0.00002	0.0005	0.00002
TOXIC AIR	POLLUTANT E	MISSIONS	INFORMAT	TION FOR	THIS SOUP	RCE		
INDICA ⁻	TE EXPECTED ACT	TUAL EMISSIOI	NS AFTER CO	ONTROLS / L	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day		lb/yr
Chlorobenzene	108-90-7	AP-42	0.0	002	0.0	005		0.02
Chloroform	67-66-3	AP-42	0.0	0002	0.0	005		0.02
Ethylene Dibromide	106-93-4	AP-42	0.0	0003	0.0	081		0.03
Formaldehyde	50-00-0	AP-42	0.	.26	6.	13	2	25.53
Hexane (or n-Hexane)	110-54-3	AP-42	0.0	002	0.	05		0.21
Methylene Chloride	75-09-2	AP-42	0.0	007	0.	02		0.07
Phenol	108-95-2	AP-42	0.0	0002	0.0	005		0.02
Attachments: (1) emissions calculations and supporting d	ocumentation; (2) indi	cate all requested	state and feder	al enforceable p	ermit limits (e.g.	hours of opera	tion, emission	rates) and

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDEN	IR/Division of Air	Quality - Applic	- Application for Air Permit to Construct/Operate				В	
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O:	EG-01	
Caterpillar G3516B Emergency Generator	r			CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACE	K) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTA	CH FLOW DIAG	RAM):					
Natural gas fired emergency generator used to pro-	rovide power during	emergency per	iods when the	e primary sour	ce of power to	the facility is	unavailable	٠.
TYPE OF EMISSION SOURGE Coal, wood, oil, gas, other burner (Form B1)	CE (CHECK AND C		PROPRIATE				•	
Int.combustion engine/generator (Form B2)	☐ Coating/finish	,	m R5)	☐ Manufact. of chemicals/coatings/inn B5)☐ Incineration (Form B8)				1
Liquid storage tanks (Form B3)	Storage silos/	J. J.	111 00)	Other (F	,	•		
	OPERATION DAT		vember 2018	DATE MANU			2016 or La	ter
MANUFACTURER / MODEL NO.:	Caterpillar G3516		г	OP. SCHEDU		'R	2010 01 24	101
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	•				UBPART?): Y			
PERCENTAGE ANNUAL THROUGHPUT (%): DI	EC-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	100	VISIBLE STAC	K EMISSION	IS UNDER NO	RMAL OPER	ATION:	<20	% OPACITY
CRITERIA AI	R POLLUTANT	EMISSIONS	S INFORM.	ATION FOR	R THIS SOL	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42	0 5	D D	4			
NITROGEN OXIDES (NOX)		Mfg	See F	Form B, Page	1, for criteria	pollutant tot	ais for this	source
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC) LEAD		Mfg						
OTHER								
HAZARDOUS A	AIR POLLUTAI	NT EMISSIO	NS INFOR	MATION FO	OR THIS S	OURCE		
		SOURCE OF		D ACTUAL	Ī	POTENTIAL	EMSSIONS	S
		EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	Ī	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Ethylene Dibromide	106-93-4	AP-42	0.0003	0.00002	0.0003	0.00002	0.0003	0.00002
Formaldehyde	50-00-0	AP-42	0.26	0.01	0.26	0.01	0.26	0.01
Hexane (or n-Hexane)	110-54-3	AP-42	0.002	0.0001	0.002	0.0001	0.002	0.0001
Methanol	67-56-1	AP-42	0.011	0.0006	0.01	0.0006	0.01	0.0006
Methylene Chloride	75-09-2	AP-42	0.001	0.00003	0.001	0.00003	0.001	0.00003
Naphthalene	91-20-3	AP-42	0.0004	0.00002	0.0004	0.00002	0.0004	0.00002
PAH		AP-42	0.0006	0.00003	0.0006	0.00003	0.0006	0.00003
Phenol	108-95-2	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
	POLLUTANT E					RUE		
TOXIC AIR POLLUTANT AND CAS NO.	TE EXI EUTED AU	EF SOURCE	ī	o/hr	1	day		lb/yr
Styrene	100-42-5	AP-42		0003	1	006		0.03
Toluene	108-88-3	AP-42		004		.11		0.45
Vinyl Chloride	75-01-4	AP-42		0001		003	+	0.01
Xylene	1330-20-7	AP-42		001		.03		0.12
Attachments: (1) emissions calculations and supporting of	locumentation: (2) indi	ionto all requested	atata and fadar	al anformable r	ormit limita (o a	hours of opera	tion omission	rotoo) and

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

REVISED 12/01/01 NCDEN	R/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	ate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O:	EG-01	
Caterpillar G3516B Emergency Generator				CONTROL DEVICE ID NO(S): NA EMISSION POINT (STACK) ID NO(S): EP-04 In the primary source of power to the facility is unavailable. TE FORM B1-B9 ON THE FOLLOWING PAGES): Manufact. of chemicals/coatings/inks (Form B7) Incineration (Form B8) Other (Form B9) Other (SUBPART?): Yes, ZZZZ UG 25 SEP-NOV 25 IONS UNDER NORMAL OPERATION: <20 % CRMATION FOR THIS SOURCE CTED ACTUAL POTENTIAL EMSSIONS CONTROLS/LIMITS) (BEFORE CONTROLS/LIMITS) (AFTER CONTROLS/LIMITS) Tons/yr Ib/hr tons/yr Ib/hr SONTROLS/LIMITS) (BEFORE CONTROLS/LIMITS) (AFTER CONTROLS/LIMITS) Tons/yr Ib/hr tons/yr Ib/hr 3 0.00001 0.0003 0.00001 0.0003 4 0.0002 0.004 0.0002 0.004 1 0.00006 0.0001 0.00006 0.0001 0.0001 MATION FOR THIS SOURCE R CONTROLS/LIMITATIONS				
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STAC	K) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE Natural gas fired emergency generator used to pro				e primary sour	ce of power to	o the facility is	unavailable	÷.
TYPE OF EMISSION SOURCE	E (CHECK AND C	COMPLETE API	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking	(Form B4)			t. of chemical	s/coatings/ink	s (Form B7))
☑ Int.combustion engine/generator (Form B2)	Coating/finish	ing/printing (For	m B5)	☐ Incinerate	tion (Form B8)		
Liquid storage tanks (Form B3)	Storage silos/	bins (Form B6)		Other (Form B9)				
START CONSTRUCTION DAT April 2017	OPERATION DAT	ΓE: No	vember 2018	DATE MANU	JFACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.:	Caterpillar G3516	В	EXPECTED	OP. SCHEDU	LE: 100 HR/Y	′R		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	RT?): Yes, JJJJ	NESHAP (SUB	PART?): No	MACT (S	JBPART?): Y	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DE	C-FEB 25 M	IAR-MAY 25	JUN-AUG	25 SEP-	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	100						<20	% OPACITY
CRITERIA AII	R POLLUTANI	T EMISSIONS	S INFORM	ATION FOR	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See F	Form B, Page	1, for criteria	pollutant tot	tals for this	source
CARBON MONOXIDE (CO)		Mfg	ļ					
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER					22 21112 2	011505		
HAZARDOUS A	AIR POLLUTAI	_			OR THIS S			
		SOURCE OF				-	1	-
		EMISSION	`	1		1	1	1
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	1		†	-	tons/yr
Styrene	100-42-5	AP-42	0.0003				-	0.00001
Toluene	108-88-3	AP-42	0.004					0.0002
Vinyl Chloride	75-01-4	AP-42	0.0001	1				0.000006
Xylene	1330-20-7	AP-42	0.001	0.00006	0.001	0.00006	0.001	0.00006
								
						RCE		
	E EXPECTED AC		1		1			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb.	o/hr	lb/	'day	<u> </u>	lb/yr
Attachments (4) emissions calculations and supporting de	oumostation (2) indi					otals for this s		o retro) and
Attachments: (1) emissions calculations and supporting do describe how these are monitored and with what frequence						. nours of opera	tion, emissior	ı rates) and

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of Air	Quali	ty - Application for Air Perm	nit to Cons	struct/Operate			B2	
EMISSION SOURCE DESCRIPTION:	Caterpillar G3516B Emergend	cy Ge	nerator	EMISSIO	N SOURCE ID N	O:	EG-01		
				CONTRO	DL DEVICE ID NO)(S):	NA		
OPERATING SCENARIO 1 of 1				EMISSIO	N POINT (STACE	() ID NO(S):	EP-04		
CHECK ALL THAT APPLY	EMERGENCY		SPACE HEAT	E	LECTRICAL GEN	IERATION			
	PEAK SHAVER		OTHER (DESCRIBE):						
GENERATOR OUTPUT (KW):	1,300 ANT	ICIP/	ATED ACTUAL HOURS OF C	OPERATIO	N AS PEAK SHA	VER (HRS/Y	'R): N/A		
ENGINE OUTPUT (HP): 1,818	<u>.</u>								
TYPE ICE: GASOLINE ENGINE	☐ DIESEL ENGINE	UP T	O 600 HP DIESEL I	ENGINE G	GREATER THAN (600 HP	DUAL FUEL	ENGINE	
✓ OTHER (DESCRIBE):	NG SI ICE emergency genera	itor		(c	complete below)				
ENGINE TYPE RICH BUR	N 🗹 LEAN BURN								
EMISSION REDUCTION MODIFICATI	ONS INJECTION TIME	NG R	ETARD PREIG	SNITION C	HAMBER COMB	USTION	☑ OTHER Ai	r/fuel ratio	
OR STATIONARY GAS TURE	BINE (complete below)		NATURAL GAS PIPELINE C	COMPRES	SOR OR TURBIN	IE (complete	below)		
FUEL: NATURAL GAS	OIL ENG	SINE :	TYPE: 2-CYCLE LEAN				TURBINE		
OTHER (DESCRIBE):			4-CYCLE RICH			_		_	
CYCLE: COGENERATION	SIMPLE CON	NTRO			ATIONS (DESCRI	IBE):			
☐ REGENERATIVE [COMBINED NO	NSEL	ECTIVE CATALYTIC REDUC	_			C REDUCTION	П	
CONTROLS: WATER-ST	TEAM INJECTION CLE	INJECTION CLEAN BURN AND PRECOMBUSTION CHAMBER UNCONTROLLED							
☐ UNCONTROLLED ☐	LEAN-PREMIX								
	FUEL USAG	E (I	NCLUDE STARTUP/BA	ACKUP	FUEL)				
			MAXIMUM DESIGN		F	REQUESTED	CAPACITY		
FUEL TYPE	UNITS		CAPACITY (UNIT/HR	₹)		LIMITATION	I (UNIT/HR)		
Natural Gas	MMBtu		14.9			N/	A		
FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE)									
						SULFUR	CONTENT		
FUEL TYPE	BTU/UNIT		UNITS			(% BY W			
Natural Gas	1,020		scf			0.00	005		
ivaturar Gas	1,020		301			0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	MANUFACTURER'S	SPE	CIFIC EMISSION FACT	TORS (II	F AVAILABLE	Ξ)			
POLLUTANT	NOX		CO PM		PM10	VOC	C 0	OTHER	
EMISSION FACTOR g/hp-hr	0.50	2	49 NA		NA	0.54	4		
UNIT	g/hp-hr	a/ł	np-hr			g/hp-	-hr		
						3 1			
DESCRIBE METHODS TO MINIM	IIZE VISIBLE EMISSIONS	DUR	ING IDLING, OR LOW LO	DAD OPE	RATIONS:				
COMMENTS:									

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDEI	NR/Division of Air Q	sion of Air Quality - Application for Air Permit to Construct/Operate						В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	O:	EG-02	
Generac SG100 Emergency Generator				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOURCE P	PROCESS (ATTACH	FLOW DIAGRA	M):					
Natural gas fired emergency generator used to prov	vide power during em	ergency periods	when the prin	nary source of	power to the f	acility is unav	ailable.	
TYPE OF EMISSION SOUR	CE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 C	N THE FOLL	OWING PAGI	ES):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking	(Form B4)					(Form B7)	
☐ Int.combustion engine/generator (Form B2)	Coating/finish	0.	m B5)	_	ion (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/	,		Other (F	orm B9)			
START CONSTRUCTION DATE: April 201	7 OPERATION DAT	E: No	vember 2018	DATE MANU	IFACTURED:		2016 or La	ter
MANUFACTURER / MODEL NO.:	Generac SG100		EXPECTED	OP. SCHEDU	LE: 100 HR/Y	R		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR	RT?): Yes, JJJJ NE	SHAP (SUBPAR	T?): No	MACT (SUBP	ART?): Yes, Z	ZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC	C-FEB 25 MAR	-MAY 25 J	UN-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION:	100	VISIBLE STAC					<20	% OPACITY
CRITERIA AI	R POLLUTANT	<u>EMISSIONS</u>	INFORMA	TION FOR	THIS SOU	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.052	0.003	0.052	0.003	0.052	0.003
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.052	0.003	0.052	0.003	0.052	0.003
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.052	0.003	0.052	0.003	0.052	0.003
SULFUR DIOXIDE (SO2)		AP-42	0.001	3.18E-05	0.001	3.18E-05	0.001	3.18E-05
NITROGEN OXIDES (NOx)		Mfg	0.001	4.92E-05	0.001	4.92E-05	0.001	4.92E-05
CARBON MONOXIDE (CO)		Mfg	0.020	0.001	0.020	0.001	0.020	0.001
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.056	0.003	0.056	0.003	0.056	0.003
LEAD								
OTHER								
HAZARDOUS A	AIR POLLUTAN				R THIS SC			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	1	
		EMISSION		ROLS / LIMITS)	`	TROLS / LIMITS)		NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,1,2,2-Tetrachloroethane	79-34-5	AP-42	2.51E-05	1.26E-06	2.51E-05	1.26E-06	2.51E-05	1.26E-06
1,1,2-Trichloroethane	79-00-5	AP-42	2.00E-05	9.98E-07	2.00E-05	9.98E-07	2.00E-05	9.98E-07
1,1-Dichloroethane	75-34-3	AP-42	1.48E-05	1	1.48E-05			
1,2-Dichloroethane	107-06-2	AP-42	1.60E-05	7.99E-07	1.60E-05	7.99E-07	1.60E-05	7.99E-07
1,2-Dichloropropane	78-87-5	AP-42	1.69E-05	8.45E-07	1.69E-05	8.45E-07	1.69E-05	8.45E-07
1,3-Butadiene	106-99-0	AP-42	3.11E-04	1.55E-05	3.11E-04	1.55E-05	3.11E-04	1.55E-05
1,3-Dichloropropene	542-75-6	AP-42	1.66E-05	8.30E-07	1.66E-05	8.30E-07	1.66E-05	8.30E-07
2,2,4-Trimethylpentane	540-84-1	AP-42	3.21E-04	1.60E-05	3.21E-04	1.60E-05	3.21E-04	1.60E-05
	POLLUTANT EI					CE		
	TE EXPECTED ACT	1			1		1	
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE		/hr	ł — — — — — — — — — — — — — — — — — — —	day		lb/yr
1,1,2,2-Tetrachloroethane	79-34-5	AP-42		E-05		E-04		0.003
1,2-Dichloroethane	107-06-2	AP-42		E-05		E-04		0.002
1,3-Butadiene	106-99-0	AP-42		E-04		007		0.031
Acetaldehyde	75-07-0	AP-42		003		071		0.294
Acrolein	107-02-8	AP-42		003		071		0.295
Benzene	71-43-2	AP-42		E-04		018		0.073
Benzo(a)pyrene	50-32-8	AP-42		E-09		E-08		15E-07
Carbon Tetrachloride	56-23-5	AP-42	2.81	E-04	0.0	007	_ (0.028

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

REVISED 12/01/01 NCDEN	R/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: EG-02				
Generac SG100 Emergency Generator				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STAC	() ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTA	CH FLOW DIAG	RAM):		,	, , ,		
Natural gas fired emergency generator used to pr	ovide power durinç	g emergency pe	riods when the	e primary sou	ce of power t	o the facility is	s unavailable	9.
TYPE OF EMISSION SOURCE	E (CHECK AND (COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	Woodworking	(Form B4)		☐ Manuface	t. of chemical	s/coatings/ink	s (Form B7))
✓ Int.combustion engine/generator (Form B2)	Coating/finish	ing/printing (Fo	rm B5)	☐ Incinerat	ion (Form B8))		
Liquid storage tanks (Form B3)	Storage silos			Other (F				
·	OPERATION DAT	TE: No		DATE MANU			2016 or La	ter
MANUFACTURER / MODEL NO.:	Generac SG100			OP. SCHEDU				
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	RT?): Yes, JJJJ	NESHAP (SUB	PART?): No	MACT (SI	JBPART?): Ye	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DE	C-FEB 25 M	IAR-MAY 25	JUN-AUG	25 SEP-N	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	100	VISIBLE STAC					<20	% OPACITY
CRITERIA AII	R POLLUTAN	T EMISSION:	S INFORM	ATION FOR	R THIS SOL	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	. EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42			•	•	•	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1					
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See F	orm B, Page	1, for criteria	pollutant to	tals for this	source
CARBON MONOXIDE (CO)		Mfg				•		
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD		iviig	1					
OTHER			1					
HAZARDOUS	AIR POLLUTA	NT EMISSIO	NS INFORI	MATION FO	OR THIS S	OURCE		
		SOURCE OF	1	D ACTUAL		POTENTIAL	FMSSIONS	<u> </u>
		EMISSION		ROLS / LIMITS)	(REEODE CONT	TROLS / LIMITS)	I	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde	75-07-0	AP-42	0.003	1.47E-04	0.003	1.47E-04	0.003	1.47E-04
Acrolein	107-02-8	AP-42	0.003	1.47E-04 1.47E-04	0.003	1.47E-04	0.003	1.47E-04 1.47E-04
Benzene	71-43-2	AP-42						
Biphenyl	92-52-4	AP-42 AP-42	7.35E-04 1.50E-06	3.67E-05	7.35E-04	3.67E-05 7.48E-08	7.35E-04	3.67E-05
Carbon Tetrachloride				7.48E-08	1.50E-06		1.50E-06	7.48E-08
	56-23-5	AP-42	2.30E-05	1.15E-06	2.30E-05	1.15E-06	2.30E-05	1.15E-06
Chlorobenzene Chloroform	108-90-7	AP-42	1.68E-05	8.41E-07	1.68E-05	8.41E-07	1.68E-05	8.41E-07
	67-66-3	AP-42	1.78E-05	8.92E-07	1.78E-05	8.92E-07	1.78E-05	8.92E-07
Ethylbenzene	100-41-4	AP-42	4.09E-05	2.05E-06	4.09E-05	2.05E-06	4.09E-05	2.05E-06
	POLLUTANT I					RCE		
INDICAT	E EXPECTED AC	TUAL EMISSIO	NS AFTER CO	ONTROLS / L	MITATIONS		T	
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day		lb/yr
Chlorobenzene	108-90-7	AP-42	1.68	BE-05	4.04	E-04	C	0.002
Chloroform	67-66-3	AP-42	1.78	BE-05	4.28	E-04	C	0.002
Ethylene Dibromide	106-93-4	AP-42	3.40	E-04	0.0	008	C	0.003
Formaldehyde	50-00-0	AP-42	0.0	021	0.5	502	2	2.091
Hexane (or n-Hexane)	110-54-3	AP-42	1.69	9E-04	0.0	004	C	0.017
Methylene Chloride	75-09-2	AP-42	5.57	'E-05	0.0	001	C	0.006
Phenol	108-95-2	AP-42	1.59	9E-05	3.83	E-04	C	0.002
Attachments: (1) emissions calculations and supporting d						g. hours of oper	ration, emission	on rates) and
describe how these are monitored and with what frequence	v. and (3) describe a	ny monitorina day	icae naumos o	r toet norte for H	ie equireo	•		

REVISED 12/01/01 NCI	ENR/Division of Air	Quality - Applic	- Application for Air Permit to Construct/Operate					В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	EG-02	
Generac SG100 Emergency Generato	r			CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STAC	() ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOUR	CE PROCESS (ATTA	CH FLOW DIAG	RAM):	•				
Natural gas fired emergency generator used t	o provide power during	g emergency pe	riods when the	e primary sou	rce of power t	o the facility is	unavailable	е.
TYPE OF EMISSION SO	•		PROPRIATE I				•	
Coal,wood,oil, gas, other burner (Form B1)			<u> </u>				s (Form B7))
Int.combustion engine/generator (Form B2)		0. 0.	m B5)	_	ion (Form B8))		
Liquid storage tanks (Form B3)	Storage silos	, ,		Other (F	•			
•	017 OPERATION DAT	TE: No	1	DATE MANU			2016 or La	ter
MANUFACTURER / MODEL NO.:	Generac SG100			OP. SCHEDU				
IS THIS SOURCE SUBJECT TO? NSPS (SUI		`		,	JBPART?): Y	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%):		MAR-MAY 25	JUN-AUG		NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION		VISIBLE STAC					<20	% OPACITY
CRITERIA	AIR POLLUTANT				1113 300			
		SOURCE OF	_	D ACTUAL		POTENTIAL	Ī	
		EMISSION		ROLS / LIMITS)		TROLS / LIMITS)	TROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER 4-10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42	Soo E	D Dago	4 for oritoria	- allutant to	-la far this	
NITROGEN OXIDES (NOX)		Mfg	366.	orm B, Page	1, 101 Cinena	роникан ко	ais ioi una	Source
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD		+						
OTHER HAZARDOL	IS AIR POLLUTA	NT FMISSIO	NS INFORI	ΜΔΤΙΩΝ Ε	OR THIS SO	OURCE		
nama v	S AIN I GELOTA.	SOURCE OF	_	D ACTUAL		POTENTIAL	EMESIONS	
		EMISSION			(DEFODE OOM		I	
HAZADDOLIS AID DOLL LITANT AND CAS NO	2		lb/hr	ROLS / LIMITS)	i i	tono/ur	1	topo//r
HAZARDOUS AIR POLLUTANT AND CAS NO Ethylene Dibromide	106-93-4	FACTOR AP-42	2.78E-05	tons/yr	lb/hr 2.78E-05	tons/yr	lb/hr 2.78E-05	tons/yr 1.39E-06
Formaldehyde	50-00-0	AP-42	0.021	1.39E-06 0.001	0.021	1.39E-06 0.001	0.021	0.001
Hexane (or n-Hexane)	110-54-3	AP-42	1.69E-04	8.43E-06	1.69E-04	8.43E-06	1.69E-04	8.43E-06
Methanol	67-56-1	AP-42	9.40E-04	4.70E-05	9.40E-04	4.70E-05	9.40E-04	4.70E-05
Methylene Chloride	75-09-2	AP-42		2.78E-06	5.57E-05	2.78E-06	5.57E-05	2.78E-06
Naphthalene	91-20-3	AP-42 AP-42	5.57E-05 3.65E-05	1.82E-06	3.65E-05	1.82E-06	3.65E-05	1.82E-06
PAH	31-20 0	AP-42 AP-42	5.08E-05	2.54E-06	5.08E-05	2.54E-06	5.08E-05	2.54E-06
Phenol	108-95-2	AP-42	1.59E-05	7.97E-07	1.59E-05	7.97E-07	1.59E-05	7.97E-07
	IR POLLUTANT	1					1.002 00	1.01 = 01
	CATE EXPECTED AC							
TOXIC AIR POLLUTANT AND CAS NO.	5/112 2/11 20125 /10	EF SOURCE				day		lb/yr
Styrene	100-42-5	AP-42					0.002	
Toluene	108-88-3	AP-42		E-04		009		0.036
Vinyl Chloride	75-01-4	AP-42		6E-06		5E-04		36E-04
Xylene	1330-20-7	AP-42		2E-04		002		0.010
Aylene	1000 20 7	711 42	1.02	L 04	0.0	302		7.010
					2012 20 7	. ,		
Attachments: (1) emissions calculations and supporti describe how these are monitored and with what free						g. nours of oper	ration, emission	on rates) and

REVISED 12/01/01 NCDENR/Division	of Air C	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	0:	EG-02	
Generac SG100 Emergency Generator				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STAC	() ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS	(ATTAC	CH FLOW DIAG	RAM):		,	, (,		
Natural gas fired emergency generator used to provide power	•		•	e primary sou	rce of power t	o the facility is	s unavailable	e.
TYPE OF EMISSION SOURCE (CHECK	AND C	OMPLETE APP	PROPRIATE I	FORM B1-B9	ON THE FOL	LOWING PAG	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Wood	working	(Form B4)		☐ Manufac	t. of chemical	s/coatings/ink	s (Form B7))
☑ Int.combustion engine/generator (Form B2) ☐ Coating	ng/finishi	ng/printing (For	m B5)	Incinerat	ion (Form B8))		
☐ Liquid storage tanks (Form B3) ☐ Storage	ge silos/l	oins (Form B6)		Other (Form B9)				
START CONSTRUCTION DAT April 2017 OPERATION	TAD NC	E: No	vember 2018	DATE MANU	FACTURED:		2016 or La	ter
MANUFACTURER / MODEL NO.: Generac S	G100		EXPECTED	OP. SCHEDU	LE: 100 HR/Y	'n		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes,	JJJJ I	NESHAP (SUBF	PART?): No	MACT (SI	JBPART?): Ye	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 2	25 M	AR-MAY 25	JUN-AUG	25 SEP-N	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 100)	VISIBLE STAC	K EMISSION	S UNDER NO	RMAL OPER	ATION:	<20	% OPACITY
CRITERIA AIR POLLU	JTANT	EMISSIONS	S INFORMA	ATION FOR	R THIS SOL	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	s
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42			•	•		
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See F	orm B, Page	1, for criteria	pollutant tot	als for this	source
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD		Ŭ						
OTHER								
HAZARDOUS AIR POLI	LUTAN	IT EMISSIOI	NS INFORI	NATION FO	OR THIS SO	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	 S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Styrene 100-4	2-5	AP-42	2.08E-05	1.04E-06	2.08E-05	1.04E-06	2.08E-05	1.04E-06
Toluene 108-8	8-3	AP-42	3.65E-04	1.82E-05	3.65E-04	1.82E-05	3.65E-04	1.82E-05
Vinyl Chloride 75-01	1-4	AP-42	9.36E-06	4.68E-07	9.36E-06	4.68E-07	9.36E-06	4.68E-07
Xylene 1330-2	20-7	AP-42	1.02E-04	5.08E-06	1.02E-04	5.08E-06	1.02E-04	5.08E-06
TOXIC AIR POLLUT	ANT E	MISSIONS I	NFORMA1	TION FOR T	THIS SOUF	RCE		
INDICATE EXPECT	ED ACT	UAL EMISSION	NS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day		lb/yr
	(0)			n B, Pages 1				
Attachments: (1) emissions calculations and supporting documentation describe how these are monitored and with what frequency; and (3) describe how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how these are monitored and with what frequency; and (3) describes how the second and with the second and t						g. hours of oper	ration, emission	on rates) and

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of A	ir Quali	ty - Application for Air Perm	nit to Construct/Operate			B2		
EMISSION SOURCE DESCRIPTION:	Generac SG100 Emergenc	y Gener	rator	EMISSION SOURCE ID NO: EG-02					
				CONTROL DEVICE ID NO	D(S):	NA			
OPERATING SCENARIO 1 of 1				EMISSION POINT (STAC	K) ID NO(S):	EP-05			
CHECK ALL THAT APPLY	■ EMERGENCY □		SPACE HEAT	ELECTRICAL GEN	NERATION				
	PEAK SHAVER		OTHER (DESCRIBE):						
GENERATOR OUTPUT (KW):	100 AN	NTICIPA	ATED ACTUAL HOURS OF C	PERATION AS PEAK SH	AVER (HRS/	YR): N/A			
ENGINE OUTPUT (HP): 148.9									
TYPE ICE: GASOLINE ENGINE	DIESEL ENGIN		TO 600 HP DIESEL E	ENGINE GREATER THAN	600 HP [DUAL FUEL I	ENGINE		
ENGINE TYPE RICH BURI		erator		(complete below)					
EMISSION REDUCTION MODIFICATI		MING R	ETARD □ PREIG	NITION CHAMBER COME	BUSTION	OTHER Air/	fuel ratio		
OR STATIONARY GAS TURE			NATURAL GAS PIPELINE C				140114110		
FUEL: NATURAL GAS			TYPE: 2-CYCLE LEAN		LEAN	•			
OTHER (DESCRIBE):			4-CYCLE RICH						
CYCLE: COGENERATION] SIMPLE CO	ONTRO		MODIFICATIONS (DESCR					
☐ REGENERATIVE □	COMBINED N	IONSEL	ECTIVE CATALYTIC REDUC	CTION SELECTIV	'E CATALYT	IC REDUCTION [
CONTROLS:	TEAM INJECTION C	LEAN E	BURN AND PRECOMBUSTIC	ON CHAMBER □	UNCONTRO				
☐ UNCONTROLLED ☐	LEAN-PREMIX								
	FUEL USA	AGE (II	NCLUDE STARTUP/BA	CKUP FUEL)					
			MAXIMUM DESIGN	F	REQUESTED	CAPACITY			
FUEL TYPE	UNITS		CAPACITY (UNIT/HR))	LIMITATION	I (UNIT/HR)			
Natural Gas	cf/hr	1116.0			N/A				
	FUEL CHARACTER	ISTICS	S (COMPLETE ALL TH	AT ARE APPLICABL	.E)				
						CONTENT			
FUEL TYPE	BTU/UNIT		UNITS		(% BY W	/EIGHT)			
Natural Gas	1,020		scf		0.00	005			
	MANUEACTURER	C CDE	CIFIC EMICCION FACT	FORC (IE AVAIL ARL	-\				
POLLUTANT			CIFIC EMISSION FACT			2 0	TUED		
	NOX		CO PM	PM10	VOO		THER		
EMISSION FACTOR g/hp-hr	0.003		1.06 NA	NA	0.17				
UNIT	g/hp-hr	g/r	np-hr		g/KW	-nr			
DESCRIBE METHODS TO MINIM									

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDE	NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate							
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	O:	WH-01	
Hurst LPW-G-125-60W Hot Water Boiler				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-06	
DESCRIBE IN DETAILTHE EMISSION SOURCE F Natural gas fired hot water boiler used to provide bu	•	FLOW DIAGRA	M):					
TYPE OF EMISSION SOUR	CE (CHECK AND CO	OMPLETE APP	ROPRIATE FO	ORM B1-B9 C	N THE FOLL	OWING PAGE	ES):	
☑ Coal,wood,oil, gas, other burner (Form B1)	Woodworking	(Form B4)	4) Manufact. of chemicals/coatings/inks (Form B7)					
☐ Int.combustion engine/generator (Form B2)	☐ Coating/finishi	ng/printing (Forn	y/printing (Form B5)					
☐ Liquid storage tanks (Form B3)	Storage silos/b	oins (Form B6)		Other (Form B9)				
START CONSTRUCTION DATE: April 20°	17 OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or La	ter
MANUFACTURER / MODEL NO.:	Hurst LPW-G-125-	-60W	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YF	₹
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR	RT?): No NESHAP ((SUBPART?): N	lo MACT	(SUBPART?):	No			
PERCENTAGE ANNUAL THROUGHPUT (%): DE	C-FEB 25 MAR-	-MAY 25 JI	UN-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA AI	R POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	5
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.039	0.171	0.039	0.171	0.039	0.171
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.039	0.171	0.039	0.171	0.039	0.171
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.039	0.171	0.039	0.171	0.039	0.171
SULFUR DIOXIDE (SO2)		AP-42	0.003	0.014	0.003	0.014	0.003	0.014
NITROGEN OXIDES (NOx)		AP-42	0.257	1.13	0.257	1.13	0.257	1.13
CARBON MONOXIDE (CO)		AP-42	0.432	1.89	0.432	1.89	0.432	1.89
VOLATILE ORGANIC COMPOUNDS (VOC)		AP-42	0.028	0.124	0.028	0.124	0.028	0.124
LEAD								
OTHER								
HAZARDOUS A	AIR POLLUTAN	T EMISSION			R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Benzene	71-43-2	AP-42	1.08E-05	4.73E-05	1.08E-05	4.73E-05	1.08E-05	4.73E-05
Dichlorobenzene	106-46-7	AP-42	6.18E-06	2.71E-05	6.18E-06	2.71E-05	6.18E-06	2.71E-05
Formaldehyde	50-00-0	AP-42	3.86E-04	0.002	3.86E-04	0.002	3.86E-04	0.002
Hexane (or n-Hexane)	110-54-3	AP-42	0.009	0.041	0.009	0.041	0.009	0.041
Naphthalene	91-20-3	AP-42	3.14E-06	1.38E-05	3.14E-06	1.38E-05	3.14E-06	1.38E-05
Toluene	108-88-3	AP-42	1.75E-05	7.67E-05	1.75E-05	7.67E-05	1.75E-05	7.67E-05
Arsenic Compounds	7440 44 7	AP-42	1.03E-06	4.51E-06	1.03E-06	4.51E-06	1.03E-06	4.51E-06
Beryllium TOYIC AIR	7440-41-7	AP-42	6.18E-08	2.71E-07	6.18E-08	2.71E-07	6.18E-08	2.71E-07
	POLLUTANT EI					<u>CE</u>		
	TE EXPECTED ACT	1	г		ı			
TOXIC AIR POLLUTANT AND CAS NO.	74.40.0	EF SOURCE		/hr		day		lb/yr
Benzene	71-43-2	AP-42		BE-05		E-04		0.095
Dichlorobenzene Eormaldohyda	106-46-7	AP-42		BE-06		E-04		0.054
Formaldehyde	50-00-0 110-54-3	AP-42 AP-42		6E-04 009		222		3.38 81.2
Hexane (or n-Hexane) Toluene	110-54-3	AP-42 AP-42		5E-05		E-04		
Arsenic Compounds	100-00-3	AP-42 AP-42		BE-05 BE-06		E-05	0.153 0.009	
Beryllium	7440-41-7	AP-42 AP-42		BE-08		E-05		11E-04
Cadmium	7440-43-9	AP-42		E-06		E-04		0.050
	7 1 70 70 0	/ 11 TE	0.00	_ 00	1.50	_ v.		

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

REVISED 12/01/01 NCDENR/Division of Ai	r Quality - Appli	cation for Air	Permit to Co	nstruct/Oper	ate		В	
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID NO	D:	WH-01		
Hurst LPW-G-125-60W Hot Water Boiler		CONTROL DEVICE ID NO(S): NA						
OPERATING SCENARIO 1 of 1			EMISSION P	OINT (STACK	() ID NO(S):	EP-06		
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA Natural gas fired hot water boiler used to provide building heat	CH FLOW DIAG	RAM):						
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):		
☑ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking	g (Form B4)		☐ Manufac	t. of chemicals	s/coatings/inks	(Form B7)		
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish	ning/printing (For	m B5)	☐ Incinerat	ion (Form B8)				
☐ Liquid storage tanks (Form B3) ☐ Storage silos	/bins (Form B6)		Other (Fo	orm B9)				
START CONSTRUCTION DAT April 2017 OPERATION DA	TE: No	vember 2018	DATE MANU	FACTURED:		2016 or Late	r	
MANUFACTURER / MODEL NO.: Hurst LPW-G-125	5-60W	EXPECTED (OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/Wh	52 WK/YR		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESHA	AP (SUBPART?):	: No MAC	CT (SUBPART	?): No				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 N	IAR-MAY 25	JUN-AUG	25 SEP-N	OV 25				
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC					<20	% OPACITY	
CRITERIA AIR POLLUTAN	IT EMISSION	S INFORM	ATION FO	R THIS SO	URCE			
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	EMSSIONS		
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)	
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)	AP-42							
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	AP-42							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	AP-42							
SULFUR DIOXIDE (SO2)	AP-42							
NITROGEN OXIDES (NOx)	AP-42	See Form B, Page 1, for criteria pollutant totals for this source						
CARBON MONOXIDE (CO)	AP-42							
VOLATILE ORGANIC COMPOUNDS (VOC)	AP-42							
LEAD								
OTHER								
HAZARDOUS AIR POLLUTA	ANT EMISSIO	NS INFOR	MATION F	<u>OR THIS S</u>	OURCE			
	SOURCE OF	EXPECTE	EXPECTED ACTUAL POTENTIAL EMSSIONS					
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Cadmium 7440-43-9	AP-42	5.66E-06	2.48E-05	5.66E-06	2.48E-05	5.66E-06	2.48E-05	
Chromium Compounds	AP-42	7.21E-06	3.16E-05	7.21E-06	3.16E-05	7.21E-06	3.16E-05	
Cobalt 7440-48-4	AP-42	4.32E-07	1.89E-06	4.32E-07	1.89E-06	4.32E-07	1.89E-06	
Manganese Compounds	AP-42	1.96E-06	8.57E-06	1.96E-06	8.57E-06	1.96E-06	8.57E-06	
Mercury 7439-97-6	AP-42	1.34E-06	5.86E-06	1.34E-06	5.86E-06	1.34E-06	5.86E-06	
Nickel 7440-02-0	AP-42	1.08E-05	4.73E-05	1.08E-05	4.73E-05	1.08E-05	4.73E-05	
Selenium 7782-49-2	AP-42	1.24E-07	5.41E-07	1.24E-07	5.41E-07	1.24E-07	5.41E-07	
TOWO AID DOLLUTANT		W/505144	7/01/ 500	T	205			
TOXIC AIR POLLUTANT					RCE			
INDICATE EXPECTED A	T	NS AFTER C	ONTROLS / L	IMITATIONS				
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE		/hr		day		o/yr	
Chromium Compounds		AP-42 7.21E-06				.063		
Manganese Compounds		AP-42 1.96E-06 4.69E-05				.017		
Mercury 7439-97-6	AP-42	1.34E-06		3.21E-05			0.012	
Nickel 7440-02-0	AP-42	1.08E-05 2.59E-04			0.	.095		
	1							
	+							
Attachments: (1) emissions calculations and supporting documentation; (2) indi how these are monitored and with what frequency; and (3) describe any monito				mit limits (e.g. h	ours of operatio	n, emission rate	s) and describe	

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of A	Air Quality - Ap	plication for Air	Permit to Constru	ct/Operate		B1	
EMISSION SOURCE DESCRIPT	ION: Hurst LPW-G-125-6	60W Hot Water	Boiler	SSION SOURCE ID	NO: WH-01			
				NTROL DEVICE ID				
OPERATING SCENARIO:	1_ OF _	1		SSION POINT (STA	. ,	S): EP-06		
DESCRIBE USE: PROCE		SPACE HEAT		ELECTRICAL G		<u> </u>		
CONTIN	NUOUS USE	STAND BY/EN	MERGENCY	OTHER (DESC	RIBE):			
HEATING MECHANISM:	X INDIRECT	0.7.11.0 0.172.1	DIRECT	0111211 (2200)				
MAX. FIRING RATE (MMBTU/HC			DIRLOT					
W/VX. FIXING TOTTE (WIMBTO/FIE	761(). 0.23	WOOD-F	FIRED BURN	ER				
WOOD TYPE: BARK	WOOD/BARK	WET WC	OOD	DRY WOOD	OTH	HER (DESCRIBE	Ξ):	
PERCENT MOISTURE OF FUEL	:					,		
UNCONTROLLED	CONTROLLE	ED WITH FLYA	SH REINJECTION	ON	CONTROLL	_ED W/O REINJI	ECTION	
FUEL FEED METHOD:		IEAT TRANSF		STEAM AIR		R (DESCRIBE)		
. 021. 225			IRED BURNI			(2200:1122)		
TYPE OF BOILER	IF OTHER DESCR	RIBE:						
PULVERIZED OVERFEED STO	KER UNDERFEED	STOKER	SPREAD	ER STOKER	FLUIDI	IZED BED		
☐ WET BED UNCONTROI	LLED UNCONTRO	LLED	UNCONTROLLED			CIRCULATING		
☐ DRY BED CONTROLLE	D CONTROLLE	ED	FLYASH F	REINJECTION	RECI	IRCULATING		
			NO FLYAS	SH REINJECTION				
		OIL/GAS-	FIRED BURN	NER				
TYPE OF BOILER:	UTILITY INDUS	STRIAL	x COMMER	CIAL	INSTITUTIO	NAL		
TYPE OF FIRING:	NORMAL TANG	SENTIAL	x LOW NOX	x LOW NOX BURNERS NO LOW NOX BURNER				
	(OTHER FUE	EL-FIRED BU	RNER				
TYPE(S) OF FUEL:								
TYPE OF BOILER:	UTILITY INDU	ISTRIAL	COMMERC	CIAL	INSTITUTIO	NAL		
TYPE OF FIRING:		CONTROL(S)	•					
	FUEL USAG	SE (INCLUD		BACKUP FUEL				
			MAXIMUM DES			EQUESTED CAI		
FUEL TYPE	UNITS	(CAPACITY (UNI	I/HR)	L	IMITATION (UN	II/HR)	
Natural Gas	scf		5,147			5,147		
F	UEL CHARACTERIS	STICS (COM	MPLETE ALL	THAT ARE AP	PLICABL	E)		
-			PECIFIC	SULFUR CON		ASH CON	ITENT	
FUEL TYP	'E	BTU	CONTENT	(% BY WEIG		(% BY WE		
Natural Ga	35	1020/scf 0.0005		0				
- Natural Co	10		020/301	0.0000				
COMMENTS:				<u> </u>				

REVISED 12/01/01 NCI	DENR/Division of Air	r Quality - Appl	ication for A	ir Permit to C	onstruct/Ope	erate		В	
MISSION SOURCE DESCRIPTION:					EMISSION SOURCE ID NO:			•	
TK-1 Pipeline Liquids Storage Tank		EMISSION SOURCE ID NO: TK-1 CONTROL DEVICE ID NO(S): NA							
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACE	K) ID NO(S):	NA		
DESCRIBE IN DETAILTHE EMISSION SOURCE TK-1 will have a capacity of 1,000 gallons and v	•		•	ds filter.					
TYPE OF EMISSION SO	URCE (CHECK AND	COMPLETE AF	PROPRIATE	FORM B1-B	9 ON THE FO	LLOWING PA	(GES):		
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking (Form B4)				Manufact. of chemicals/coatings/inks (Form B7)					
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finishing/printing (Form B5) ☐ Liquid storage tanks (Form B3) ☐ Storage silos/bins (Form B6)			☐ Incineration (Form B8) ☐ Other (Form B9)						
START CONSTRUCTION DAT April 2017 OPERATION DATE: November 2018					IFACTURED:		2016 or Later	<u> </u>	
'					LE: 24 HR/DA	Y 7 DAY/W	< 52 WK/YR		
IS THIS SOURCE SUBJECT TO? NSPS (SUB	PART?): No NESH/	AP (SUBPART?)): No MA	ACT (SUBPAR	:T?): No				
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-l	NOV 25				
EXPECTED ANNUAL HOURS OF OPERATION	,	VISIBLE STAC						% OPACITY	
CRITERIA	AIR POLLUTAN	IT EMISSION	IS INFORM	NATION FO	R THIS SC	URCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	i	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		-	-	-	-	-	•	-	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		-	-	-	-	-	•	-	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		-	-	-	-	-	•	-	
SULFUR DIOXIDE (SO2)		-	-	-	-	-	-	-	
NITROGEN OXIDES (NOx)		-	-	-	-	-	-	-	
CARBON MONOXIDE (CO)		-	-	-	-	-	-	-	
VOLATILE ORGANIC COMPOUNDS (VOC)		Mass balance	0.033	0.145	0.033	0.145	0.033	0.145	
LEAD									
OTHER									
HAZARDOU	IS AIR POLLUTA	NT EMISSIC	NS INFOR	RMATION F	OR THIS S	SOURCE			
		SOURCE OF	EXPECTE	D ACTUAL	TUAL POTENTIAL EMSSIONS			i	
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS) (AFT		(AFTER CON	TROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
NA									
TOYIC	ID DOLL LITANT	FMICCIONS	INICODIA	TION FOR	TUC COL	IDOE			
	IR POLLUTANT								
	CATE EXPECTED A	1			1	1			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	ID)/hr	ID/	day	IK	b/yr	
NA									
Attach manta (4) amining a last discount of	n de acoma ente Cara (O) : 1	landa all montre de la	atata av d.fr.d	al aufau l- l	anne it line it - /-	have at	ia.a. a.a.i!		
Attachments: (1) emissions calculations and supporting how these are monitored and with what frequency; and						. nours of operat	ion, emission ra	ies) and describ	

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01	NCDENK/DIVISION	i of Air Quality	- Application for	Air Perii	nit to Construct/Operate	DO
EMISSION SOURCE DESCRIPTION:	Pipeli	ne Liquids Stor	rage Tank	EMISSIC	ON SOURCE ID NO: TK-1	
				CONTR	OL DEVICE ID NO(S): NA	
OPERATING SCENARIO 1 of 1				EMISSIC	ON POINT (STACK) ID NO(S): NA	
			H STORAGE	TANK		
DESCRIBE IN DETAIL THE STORAGE TK-1 will have a capacity of 1,000 gallor				e fluids fi	lter.	
LIQUID STORED: Liquids from co	ompressor engine fl	uids filter	LIQUID MOLECU	JLAR WE	IGHT (LB/LB-MOLE): TBD	
TANK CAPACITY (GAL): 1,000			VAPOR MOLEC	JLAR WE	EIGHT (LB/LB-MOLE): TBD	
AVERAGE LIQUID SURFACE TEMPER	ATURE (F):	77	VAPOR PRESSI	JRE AT A	AVE. LIQUID SURFACE TEMP (PSIA): 7.70 (Reid	d)
MIN. LIQUID SURFACE TEMP (F): 44	MAX. LIQUID	SURFACE TE	MP (F): 80		MAX. TRUE VAPOR PRESS. (PSIA): 7.70 (Reid	(t
BULK LIQUID TEMPERATURE (F):	BREATHER	VENT SETTING	GS (PSIG)	/ACUUM	PRESSURE	
SHELL DIAMETER (FT): 4.12	SHELL CONI	DITION: X G	OOD POOR		IS TANK HEATED: YES X NO	
SHELL COLOR: Grey/Light	MAXIMUM TI	HROUGHPUT	(GAL/YR):	5,000	MAXIMUM TURNOVERS PER YEAR: 5.00	
WORKING VOLUME (GAL): 1,00	00 ACTUAL THE	ROUGHPUT (G	GAL/YR):	5,000	ACTUAL TURNOVERS PER YEAR: 5.00	
MAX. FILLS PER DAY: TBE	MAX. FILLING	G RATE (GAL/I	MIN):	TBD	MIN. DURATION OF FILL (HR/FILL): TBD	
		VERTICA	L FIXED RO	OF TAN	IKS	
SHELL HEIGHT (FT): 10		ROOF TYPE:	: X CONE OR		DOME ROOF HEIGHT (FT): 4.12	
AVERAGE LIQUID HEIGHT (FT):	5	ROOF COND	ITION: X GO	OD OR	POOR	
MAXIMUM LIQUID HEIGHT (FT):	10	ROOF COLO	R: Grey			
		НОІ	RIZONTAL TA	NKS		
SHELL LENGTH (FT): NA		IS TANK UNI	DERGROUND ?:	YES	S X NO	
		FLOA	TING ROOF	TANKS		
DESCRIBE PERTINENT TANK DATA S	SUCH AS DECKS, F	RIM-SEALS, LI	QUID DENSITY (@ 60 DEC	G F:	
NA						
DESCRIBE ANY MONITORING OR WA	RNING DEVICES (SUCH AS LEA	K AND FUME DE	TECTIO	N INSTRUMENTATION):	
NA					·	
COMMENTS:						

REVISED 12/01/01 NCDE	NR/Division of Air Quality - App	lication for A	ir Permit to C	onstruct/Ope	erate		В		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: TK-2					•		
TK-2 Hydrocarbon Waste Tank			CONTROL DEVICE ID NO(S): NA						
OPERATING SCENARIO 1 of 1			EMISSION F	POINT (STAC	K) ID NO(S):	NA			
DESCRIBE IN DETAILTHE EMISSION SOURCE TK-2 will have a capacity of 2,500 gallons and will	•	GRAM):							
TYPE OF EMISSION SOUR	RCE (CHECK AND COMPLETE A	PPROPRIATE	FORM B1-B	9 ON THE FO	LLOWING PA	AGES):			
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking (Form B4)				Manufact. of chemicals/coatings/inks (Form B7)					
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finishing/printing (Form B5) ☐ Liquid storage tanks (Form B3) ☐ Storage silos/bins (Form B6)			☐ Incineration (Form B8) ☐ Other (Form B9)						
START CONSTRUCTION DAT April 2017	ovember 2018	DATE MANU	JFACTURED:		2016 or Later	r			
MANUFACTURER / MODEL NO.:	OP. SCHEDU	ILE: 24 HR/DA	Y 7 DAY/WI	< 52 WK/YR					
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	ART?): No NESHAP (SUBPART	?): No M/	ACT (SUBPAR	RT?): No					
PERCENTAGE ANNUAL THROUGHPUT (%): DI	EC-FEB 25 MAR-MAY 25	JUN-AUG	25 SEP-I	NOV 25					
EXPECTED ANNUAL HOURS OF OPERATION:	8,760 VISIBLE STA	CK EMISSION	IS UNDER NO	RMAL OPER	ATION:		% OPACITY		
CRITERIA A	AIR POLLUTANT EMISSIO	NS INFORI	NATION FO	R THIS SC	URCE				
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS			
	EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)		
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)	-	-	-	-	-	-	-		
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-		
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	-		
SULFUR DIOXIDE (SO2)	-	-	-	-	-	-	-		
NITROGEN OXIDES (NOx)	-	-	-	-	-	-	-		
CARBON MONOXIDE (CO)	-	-	-	-	-	-	-		
VOLATILE ORGANIC COMPOUNDS (VOC)	Mass balance	5.01E-06	2.19E-05	5.01E-06	2.19E-05	5.01E-06	2.19E-05		
LEAD									
OTHER									
HAZARDOUS	AIR POLLUTANT EMISSI	ONS INFO	RMATION F	OR THIS S	SOURCE				
	SOURCE OF	EXPECTE	D ACTUAL	UAL POTENTIAL EMSSIONS			i		
	EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
NA									
TOYIC AII		C INCODIA	TION FOR	TUCCOL					
	R POLLUTANT EMISSIONS ATE EXPECTED ACTUAL EMISSI								
	1	1		1					
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	i ir	o/hr	ID/	day	IK	b/yr		
NA									
	+	+		 					
		+		 					
		+							
		+							
		+		 					
Attachments: (1) emissions calculations and ourse time of	locumentation: (2) indicate all recovering	d atata and fade	ral anfarasahla =	ormit limita /s =	hours of ans	ion omission	atoc) and dass-ib		
Attachments: (1) emissions calculations and supporting d how these are monitored and with what frequency; and (3					. nours or operar	.ioii, eiiiissioii fa	ico) anu describ		

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01 N	CDENR/Division of Air Quality	· - Application for Air Pe	rmit to Construct/Operate	B3		
EMISSION SOURCE DESCRIPTION:	OURCE DESCRIPTION: Hydrocarbon Waste Tank		EMISSION SOURCE ID NO: TK-2			
		CONT	ROL DEVICE ID NO(S): NA			
OPERATING SCENARIO 1 of 1		EMISS	EMISSION SOURCE ID NO: TK-2 CONTROL DEVICE ID NO(S): NA EMISSION POINT (STACK) ID NO(S): NA EMISSION POINT (STACK) ID NO(S): NA ETANK CULAR WEIGHT (LB/LB-MOLE): TBD CULAR WEIGHT (LB/LB-MOLE): TBD SURE AT AVE. LIQUID SURFACE TEMP (PSIA): 0.0001 MAX. TRUE VAPOR PRESS. (PSIA): 0.0001 VACUUM PRESSURE Default Tanks 4.09d settings R			
		H STORAGE TANK	(
DESCRIBE IN DETAIL THE STORAGE TA TK-2 will have a capacity of 1,000 gallons a		Л):				
LIQUID STORED: Waste Oil		LIQUID MOLECULAR W	/EIGHT (LB/LB-MOLE): TBD			
TANK CAPACITY (GAL): 2,500		VAPOR MOLECULAR V	VEIGHT (LB/LB-MOLE): TBD			
AVERAGE LIQUID SURFACE TEMPERAT	MAX. LIQUID SURFACE TEMP (F): 80 MAX. TRUE VAPOR PRESS. (PSIA): 0.0001 BREATHER VENT SETTINGS (PSIG) VACUUM PRESSURE Default Tanks 4.09d settings SHELL CONDITION: X GOOD POOR IS TANK HEATED: YES X NO MAXIMUM THROUGHPUT (GAL/YR): 12,500 MAXIMUM TURNOVERS PER YEAR: 5.00 ACTUAL THROUGHPUT (GAL/YR): 12,500 ACTUAL TURNOVERS PER YEAR: 5.00 MAX. FILLING RATE (GAL/MIN): TBD MIN. DURATION OF FILL (HR/FILL): TBD VERTICAL FIXED ROOF TANKS ROOF TYPE: X CONE OR DOME ROOF HEIGHT (FT): 4.6 ROOF CONDITION: X GOOD OR POOR ROOF COLOR: Grey HORIZONTAL TANKS					
MIN. LIQUID SURFACE TEMP (F): 44	MAX. LIQUID SURFACE TE	MP (F): 80	MAX. TRUE VAPOR PRESS. (PSIA): 0.0001			
BULK LIQUID TEMPERATURE (F):	BREATHER VENT SETTING	GS (PSIG) VACUU	M PRESSURE Default Tanks 4.09d sett	ings		
SHELL DIAMETER (FT): 4.6	SHELL CONDITION: X G	GOOD POOR	IS TANK HEATED: YES X NO			
SHELL COLOR: Grey/Light	MAXIMUM THROUGHPUT	(GAL/YR): 12,50	0 MAXIMUM TURNOVERS PER YEAR: 5.00			
WORKING VOLUME (GAL): 2,500	ACTUAL THROUGHPUT (G	GAL/YR): 12,50	0 ACTUAL TURNOVERS PER YEAR: 5.00			
MAX. FILLS PER DAY: TBD	MAX. FILLING RATE (GAL/I	MIN): TBD	MIN. DURATION OF FILL (HR/FILL): TBD			
	VERTICA	AL FIXED ROOF TA	NKS			
SHELL HEIGHT (FT): 20	ROOF TYPE	: X CONE OR	DOME ROOF HEIGHT (FT): 4.6			
AVERAGE LIQUID HEIGHT (FT): 10	ROOF COND	DITION: X GOOD OF	POOR			
MAXIMUM LIQUID HEIGHT (FT): 20	ROOF COLO	R: Grey				
	НОІ	RIZONTAL TANKS				
SHELL LENGTH (FT): NA	IS TANK UNI	DERGROUND ?: YI	ES X NO			
	FLOA	TING ROOF TANK	S			
DESCRIBE PERTINENT TANK DATA SU	CH AS DECKS, RIM-SEALS, LI	IQUID DENSITY @ 60 DI	EG F:			
NA						
DESCRIBE ANY MONITORING OR WAR	NING DEVICES (SUCH AS LEA	AK AND FUME DETECTION	ON INSTRUMENTATION):			
NA						
COMMENTS:						

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/	Division of Air Quality - App	olication for A	Air Permit to C	onstruct/Ope	erate		В
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: TK-3			TK-3	
TK-3 Ammonia Tank		CONTROL DEVICE ID NO(S): NA			NA		
OPERATING SCENARIO 1 of 1			EMISSION F	POINT (STAC	K) ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE PRO TK-3 will have a capacity of 13,400 gallons and will sto	•	AGRAM):					
TYPE OF EMISSION SOURCE	(CHECK AND COMPLETE	APPROPRIAT	E FORM B1-B	9 ON THE FO	DLLOWING PA	AGES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	Woodworking (Form B4)		☐ Manufac	t. of chemical	ls/coatings/ink	s (Form B7)	
] Coating/finishing/printing (Fo] Storage silos/bins (Form B6	,	☐ Incinerate ☐ Other (F	tion (Form B8 Form B9))		
START CONSTRUCTION DAT April 2017 OP	ERATION DATE: N	November 201	8 DATE MANU	JFACTURED:		2016 or Late	r
MANUFACTURER / MODEL NO.: NA		EXPECTED	OP. SCHEDU	ILE: 24 HR/D/	AY 7 DAY/WI	K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESHAP (SUBPART	?): No M	ACT (SUBPAR	RT?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-F	EB 25 MAR-MAY 25	JUN-AUG	25 SEP-	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760 VISIBLE STA	CK EMISSIO	NS UNDER NO	RMAL OPER	RATION:		% OPACITY
CRITERIA AIR	POLLUTANT EMISSIO	NS INFOR	MATION FO	R THIS SC	DURCE		
	SOURCE OF	EXPECT	ED ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CON	TROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	-	-	-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	-
SULFUR DIOXIDE (SO2)	-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)	-	-	-	-	-	-	-
CARBON MONOXIDE (CO)	-	-	-	-	-	-	-
VOLATILE ORGANIC COMPOUNDS (VOC)	-	-	-	-	-	-	-
LEAD							
OTHER							
HAZARDOUS AII	R POLLUTANT EMISSI	IONS INFO	RMATION F	OR THIS	SOURCE	-	
	SOURCE OF	EXPECT	ED ACTUAL		POTENTIA	L EMSSIONS	;
	EMISSION	(AFTER CON	TROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NA							
	OLLUTANT EMISSION						
INDICATE	EXPECTED ACTUAL EMISS		CONTROLS /	LIMITATIONS	5	T	
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	<u> </u>	b/hr	lb,	/day	ı	lb/yr
Ammonia	Eng. Data	١	Neg.	N	leg.	١	Neg.
Attachments: (1) emissions calculations and supporting document how these are monitored and with what frequency; and (3) des					. hours of operat	tion, emission ra	ates) and describe

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01 No	CDENR/Division of Air Quality	· - Application for Ai	r Pern	nit to Construct/Operate	B3
EMISSION SOURCE DESCRIPTION:	Ammonia Ta	ınk EN	MISSIC		
		CC	ONTRO	DL DEVICE ID NO(S): NA	
OPERATING SCENARIO 1 of 1		EN	MISSIC	ON POINT (STACK) ID NO(S): NA	
	EAC	H STORAGE TA	NK		
DESCRIBE IN DETAIL THE STORAGE TA TK-3 will have a capacity of 13,000 gallons		M):			
LIQUID STORED: Aqueous ammoni	ia	LIQUID MOLECULA	AR WE	IGHT (LB/LB-MOLE): TBD	
TANK CAPACITY (GAL): 13,400		VAPOR MOLECULA	AR WE	EIGHT (LB/LB-MOLE): TBD	
AVERAGE LIQUID SURFACE TEMPERAT	URE (F): NA	VAPOR PRESSURI	E AT A	VE. LIQUID SURFACE TEMP (PSIA): NA	
MIN. LIQUID SURFACE TEMP (F): NA	MAX. LIQUID SURFACE TE	EMP (F): NA		MAX. TRUE VAPOR PRESS. (PSIA): NA	
BULK LIQUID TEMPERATURE (F):	BREATHER VENT SETTING	GS (PSIG) VA	СИИМ	PRESSURE	
SHELL DIAMETER (FT): 8.2	SHELL CONDITION: X G	GOOD POOR		IS TANK HEATED: YES X NO	
SHELL COLOR: Grey/Light	MAXIMUM THROUGHPUT	(GAL/YR):	NA	MAXIMUM TURNOVERS PER YEAR: NA	
WORKING VOLUME (GAL): 13,400	ACTUAL THROUGHPUT (G	GAL/YR):	NA	ACTUAL TURNOVERS PER YEAR: NA	
MAX. FILLS PER DAY: NA	MAX. FILLING RATE (GAL/I	MIN):	NA	MIN. DURATION OF FILL (HR/FILL): NA	
	VERTICA	AL FIXED ROOF	TAN	KS	
SHELL HEIGHT (FT):	ROOF TYPE	: X CONE OR		POME ROOF HEIGHT (FT):	
AVERAGE LIQUID HEIGHT (FT):	ROOF COND	DITION: X GOOD	OR	POOR	
MAXIMUM LIQUID HEIGHT (FT):	ROOF COLO	R: Grey			
	НО	RIZONTAL TAN	KS		
SHELL LENGTH (FT): 32.9	IS TANK UNI	DERGROUND ?: _	_ YES	S X NO	
		TING ROOF TA			
DESCRIBE PERTINENT TANK DATA SUC	CH AS DECKS, RIM-SEALS, LI	IQUID DENSITY @ 6	0 DEG	6 F:	
NA					
DESCRIBE ANY MONITORING OR WARN	IING DEVICES (SUCH AS LEA	AK AND FUME DETE	CTION	N INSTRUMENTATION):	
NA					
COMMENTS:					

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDEN	R/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
EMISSION SOURCE DESCRIPTION:	URCE DESCRIPTION: EMISSION SOU					O:	Fug-01	
Fugitive Leaks - Blowdowns				CONTROL DEVICE ID NO(S): NA				
OPERATING SCENARIO 1 of 1				EMISSION POINT (STACK) ID NO(S): NA				
DESCRIBE IN DETAILTHE EMISSION SOURCE Fugitive Emissions from station blowdowns.	PROCESS (ATTA	CH FLOW DIAG	GRAM):					
TYPE OF EMISSION SOURCE	CE (CHECK AND C	OMPLETE API	PROPRIATE	FORM R1-R0	ON THE FOL	I OWING PA	GES).	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking		ROPKIATE		t. of chemical		•	١
☐ Int.combustion engine/generator (Form B2)	Coating/finish	,	m B5)	_	tion (Form B8)	· ·	5 (1 01111 B7)	,
Liquid storage tanks (Form B3)	Storage silos/		50)	Other (F	` ,			
	OPERATION DAT	· · · · ·	vember 2018	DATE MANU			2016 or La	iter
MANUFACTURER / MODEL NO.:	NA				LE: 24 HR/DA	Y 7 DAY/W		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA		AP (SUBPART?		ACT (SUBPAR				
PERCENTAGE ANNUAL THROUGHPUT (%): DE		AR-MAY 25	JUN-AUG		NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC	K EMISSION	IS UNDER NO	RMAL OPER	ATION:		% OPACITY
CRITERIA AI	R POLLUTANT	EMISSIONS	S INFORM	ATION FOR	R THIS SOL	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		-	-	-	-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		-	-	-	-	-	-	-
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		-	-	-	-	-	-	-
SULFUR DIOXIDE (SO2)		-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)		-	-	-	-	-	-	-
CARBON MONOXIDE (CO)		-	-	-	-	-	-	-
VOLATILE ORGANIC COMPOUNDS (VOC)		Mass balance	4.30	18.84	4.30	18.84	4.30	18.84
LEAD								
OTHER							<u> </u>	
HAZARDOUS A	AIR POLLUTAI	NT EMISSIO	NS INFORI	MATION FO	OR THIS SO	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Hexane	110-54-3	Mass balance	0.24	1.06	0.24	1.06	0.24	1.06
TOYIC AIR	POLLUTANT E	- EMISSIONS I	NEORMAT	TION FOR	THIS SOLIE	PCF	<u> </u>	
	E EXPECTED AC					(OL		
TOXIC AIR POLLUTANT AND CAS NO.	2 2/4 20125 /10	EF SOURCE		/hr	1	day		lb/yr
Hexane	110-54-3	Mass balance		.24		.81		120.00
Tiexane	110-34-3	Wass balance	0.	.27	0.	.01		120.00
							1	
							1	
Attachments: (1) emissions calculations and supporting d	ocumentation: (2) indi	cate all requested	etate and feder	al enforceable r	ermit limite /o.a.	hours of opera	tion emission	rates) and

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

FORM B9 EMISSION SOURCE (OTHER)

		t/Operate	B9
	EMISSION SOUR	CE ID NO:	Fug-01
	CONTROL DEVIC	. ,	NA
	EMISSION POINT	(STACK) ID NO(S):	NA
	MAY DESIGN	PEOLIEST	ED CAPACITY
LINITS	4		
			DN(UNIT/FIK)
IVA	IVA	IVA	
	MAX. DESIGN	REQUEST	ED CAPACITY
UNITS	PACITY (UNIT/BAT	LIMITATION	(UNIT/BATCH)
(DATOLIEO A/D):	NIA.		
,		ON DTIMUDA	NIA
	,	· · · · · · · · · · · · · · · · · · ·	NA NA
NEQUESTED CAFAC	JIII ANNOAL FUL	LUSE.	
	(BATCHES/YR): TOTAL MAXIMUM FI	MAX. DESIGN UNITS APACITY (UNIT/H NA NA MAX. DESIGN MAX. DESIGN UNITS ACITY (UNIT/BAT ACITY (UNIT/BAT BATCHES/YR): NA TOTAL MAXIMUM FIRING RATE (MILLI	MAX. DESIGN REQUEST UNITS APACITY (UNIT/H LIMITATION NA NA NA MAX. DESIGN REQUEST UNITS PACITY (UNIT/BA* LIMITATION

Attach Additional Sheets as Necessary

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENI	R/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	ate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O:	Fug-02	
Fugitive Leaks - Piping				CONTROL DEVICE ID NO(S): NA				
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACI	K) ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE F Fugitive Emissions from station piping leaks.	PROCESS (ATTA	CH FLOW DIAG	GRAM):					
TYPE OF EMISSION SOURC	E (CHECK AND	COMPLETE APP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking	g (Form B4)		☐ Manufac	t. of chemical	s/coatings/ink	s (Form B7))
☐ Int.combustion engine/generator (Form B2)	Coating/finish	O. O.	m B5)	_	tion (Form B8))		
Liquid storage tanks (Form B3)	Storage silos							
·	OPERATION DA	TE: No		DATE MANU			2016 or La	
	NA			OP. SCHEDU		AY 7 DAY/W	K 52 WK/Y	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAI				ACT (SUBPAR				
PERCENTAGE ANNUAL THROUGHPUT (%): DE		MAR-MAY 25	JUN-AUG		NOV 25	471011		0/ 0D40IT/
EXPECTED ANNUAL HOURS OF OPERATION: CRITERIA AIF	8,760	VISIBLE STAC						% OPACITY
CRITERIA AII	R FOLLOTAIN	_			11113 300		FMCCION	
		SOURCE OF EMISSION		D ACTUAL	(DEFORE CON	POTENTIAL	1	
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		-	-	- toris/yi	-	- toris/yi	-	- toris/yi
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		<u> </u>	_	_	_	_	_	_
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		-	-	-	-	-	-	-
SULFUR DIOXIDE (SO2)		-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)		-	-	-	-	-	-	-
CARBON MONOXIDE (CO)		-	-	-	-	-	-	-
VOLATILE ORGANIC COMPOUNDS (VOC)		EPA	0.080	0.352	0.080	0.352	0.080	0.352
LEAD								
OTHER								
HAZARDOUS A	IR POLLUTA	NT EMISSIO	NS INFOR	MATION FO	OR THIS S	OURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	. EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Hexane	110-54-3	Mass Balance	0.005	0.020	0.005	0.020	0.005	0.020
		<u> </u>					 	
		1					<u> </u>	
		+					<u> </u>	
		+					 	
		+						
							1	
TOXIC AIR I	POLLUTANT	- FMISSIONS I	INFORMAT	TION FOR	THIS SOUR	RCF	J	
	E EXPECTED AC							
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	Ib	/hr	lb/	/day	1	lb/yr
Hexane	110-54-3	Mass Balance		005		110		40.0
		1					1	
Attachments: (1) emissions calculations and supporting do	cumentation: (2) ind	icate all requested	etate and fedor	al enforceable r	ormit limite (o.a.	hours of opera	tion emission	n rates) and

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B9 EMISSION SOURCE (OTHER)

	- Application for Air	Permit to Construc	t/Operate	В9
EMISSION SOURCE DESCRIPTION:		EMISSION SOUR	CE ID NO:	Fug-02
Fugitive Leaks - Piping		CONTROL DEVIC	E ID NO(S):	NA
OPERATING SCENARIO: 1 of 1		EMISSION POINT	(STACK) ID NO(S):	NA
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Fugitive Emissions from station piping leaks.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS		MAX. DESIGN	REQUEST	ED CAPACITY
TYPE	UNITS	APACITY (UNIT/H		DN(UNIT/HR)
Natural gas	NA NA	NA	NA	JN(UNIT/TIK)
vactorial gas	107	14/4	14/1	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUEST	ED CAPACITY
ТҮРЕ	UNITS	PACITY (UNIT/BAT	LIMITATION	(UNIT/BATCH)
NA .				
MANIMUM DECION (DATOLIES / LIQUID):				
MAXIMUM DESIGN (BATCHES / HOUR): NA	(BATCHES/YR):	NA		
DECLIESTED LIMITATION (DATCHES / HOLID). NA	(BATCHES/TR).	INA		
REQUESTED LIMITATION (BATCHES / HOUR): NA		IDINO DATE /MILLI	ON DTIT/LID).	NΙΛ
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM F	,	,	NA NA

Attach Additional Sheets as Necessary

FACILITY-WIDE EMISSIONS SUMMARY

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate D1

		in Quality - Application for Air Fermit i	·							
CRI	CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE									
		EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS						
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /						
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)						
AIR POLLUTANT EMITTED		tons/yr	tons/yr	tons/yr						
PARTICULATE MATTER (PM)		18.3	18.3	18.3						
PARTICULATE MATTER < 10 MICRONS (PM ₁₀))	18.3	18.3	18.3						
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.3}	5)	18.3	18.3	18.3						
SULFUR DIOXIDE (SO2)		3.10	3.10	3.10						
NITROGEN OXIDES (NOx)		19.2	47.5	19.2						
CARBON MONOXIDE (CO)		31.0	84.9	31.0						
VOLATILE ORGANIC COMPOUNDS (VOC)		21.2	22.7	21.2						
LEAD										
OTHER										
HAZA	RDOUS AIR POL	LUTANT EMISSIONS INFORMATION	ON - FACILITY-WIDE							
		EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS						
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /						
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)						
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr						
1,1,2,2-Tetrachloroethane	79-34-5	1.66E-05	1.66E-05	1.66E-05						
1,1,2-Trichloroethane	79-00-5	1.32E-05	1.32E-05	1.32E-05						
1,1-Dichloroethane	75-34-3	9.78E-06	9.78E-06	9.78E-06						
1,2-Dichloroethane	107-06-2	1.06E-05	1.06E-05	1.06E-05						
1,2-Dichloropropane	78-87-5	1.12E-05	1.12E-05	1.12E-05						
1,3-Butadiene	106-99-0	3.69E-04	5.33E-04	3.69E-04						
1,3-Dichloropropene	542-75-6	1.10E-05	1.10E-05	1.10E-05						
2,2,4-Trimethylpentane	540-84-1	2.12E-04	2.12E-04	2.12E-04						
Acetaldehyde	106-99-0	0.017	0.032	0.017						
Acrolein	75-07-0	0.004	0.007	0.004						
Benzene	71-43-2	0.005	0.010	0.005						
Biphenyl	92-52-4	9.88E-07	9.88E-07	9.88E-07						
Carbon Tetrachloride	56-23-5	1.52E-05	1.52E-05	1.52E-05						

TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE

INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q. .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY.

					Modeling Required ?		Note	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	1	
1,1,2,2-Tetrachloroethane	79-34-5	3.32E-04	0.008	0.033		х	1	
1,2-Dichloroethane	107-06-2	1.97E-04	0.005	0.021		х	1	
1,3-Butadiene	106-99-0	0.004	0.099	0.739		х	1	
Acetaldehyde	75-07-0	0.042	1.02	34.4		х	1	
Acrolein	75-07-0	0.039	0.948	8.78		х	1	
Ammonia	7664-41-7	2.83	67.9	24,773		х	1	
Benzene	71-43-2	0.011	0.258	10.2		х	1	
Benzo(a)pyrene	50-32-8	2.84E-08	6.82E-07	2.84E-06		х	1	
Carbon Tetrachloride	56-23-5	5.62E-04	0.013	0.030		х	1	
Chlorobenzene	108-90-7	2.22E-04	0.005	0.022		х	1	
Chloroform	67-66-3	2.36E-04	0.006	0.024		х	1	
Dichlorobenzene	106-46-7	6.18E-06	1.48E-04	0.054		х	1	
Ethylene Dibromide	106-93-4	6.79E-04	0.016	0.037		х	1	
Formaldehyde	50-00-0	0.528	12.7	2,229		х	1	
Hexane (or n-Hexane)	110-54-3	0.258	6.2	2,241		х	1	

COMMENTS:

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

FACILITY-WIDE EMISSIONS SUMMARY

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate D1

CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE								
	EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS					
	(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /					
	LIMITATIONS)	LIMITATIONS)	LIMITATIONS)					
AIR POLLUTANT EMITTED	tons/yr	tons/yr	tons/yr					
PARTICULATE MATTER (PM)								
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)								
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})								
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)	See Form D1, I	Page 1, for criteria pollutant	totals.					
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								

HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE							
		EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS			
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /			
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)			
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr			
Chlorobenzene	108-90-7	1.11E-05	1.11E-05	1.11E-05			
Chloroform	67-66-3	1.18E-05	1.18E-05	1.18E-05			
Dichlorobenzene	106-46-7	2.71E-05	2.71E-05	2.71E-05			
Ethylbenzene	100-41-4	0.012	0.024	0.012			
Ethylene Dibromide	106-93-4	1.84E-05	1.84E-05	1.84E-05			
Formaldehyde	75-07-0	1.11	2.21	1.11			
Hexane (or n-Hexane)	110-54-3	1.12	1.12	1.12			
Methanol	67-56-1	6.21E-04	6.21E-04	6.21E-04			
Methylene Chloride	75-09-2	3.68E-05	3.68E-05	3.68E-05			
Napthalene	91-20-3	5.34E-04	0.001	5.34E-04			
PAH		8.73E-04	0.002	8.73E-04			
Phenol	108-95-2	1.05E-05	1.05E-05	1.05E-05			
Propylene oxide	75-56-9	0.011	0.022	0.011			
Styrene	100-42-5	1.37E-05	1.37E-05	1.37E-05			
Toluene	108-88-3	0.050	0.100	0.050			

TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE

INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY.

					Modeling	Required ?	Note
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	1
Methylene Chloride	75-09-2	7.36E-04	0.018	0.074		х	1
Phenol	108-95-2	2.11E-04	0.005	0.021		Х	1
Styrene	100-42-5	2.74E-04	0.007	0.027		Х	1
Toluene	108-88-3	0.016	0.388	99.8		Х	1
Vinyl Chloride	75-01-4	1.24E-04	0.003	0.012		Х	1
Xylene	1330-20-7	0.007	0.166	49.0		Х	1

COMMENTS:

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

FACILITY-WIDE EMISSIONS SUMMARY

REVISED 12/01/01

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

D1

CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE							
	EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS				
	(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /				
	LIMITATIONS)	LIMITATIONS)	LIMITATIONS)				
AIR POLLUTANT EMITTED	tons/yr	tons/yr	tons/yr				
PARTICULATE MATTER (PM)							
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)							
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})							

SULFUR DIOXIDE (SO2)
NITROGEN OXIDES (NOx)

CARBON MONOXIDE (CO)
VOLATILE ORGANIC COMPOUNDS (VOC)

LEAD

OTHER

See Form D1, Page 1, for criteria pollutant totals.

HAZARD	OUS AIR POLLU	TANT EMISSIONS INFORMATION	I - FACILITY-WIDE	
		EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr
Vinyl Chloride	75-01-4	6.18E-06	6.18E-06	6.18E-06
Xylene	1330-20-7	0.024	0.049	0.024
Arsenic Compounds		4.51E-06	4.51E-06	4.51E-06
Beryllium	7440-41-7	2.71E-07	2.71E-07	2.71E-07
Cadmium	7440-43-9	2.48E-05	2.48E-05	2.48E-05
Chromium Compounds		3.16E-05	3.16E-05	3.16E-05
Cobalt	7440-48-4	1.89E-06	1.89E-06	1.89E-06
Manganese Compounds		8.57E-06	8.57E-06	8.57E-06
Mercury	7439-97-6	5.86E-06	5.86E-06	5.86E-06
Nickel	7440-02-0	4.73E-05	4.73E-05	4.73E-05
Selenium	7782-49-2	5.41E-07	5.41E-07	5.41E-07
_				

TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE

INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY.

					Modeling	Note	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
Arsenic Compounds		1.03E-06	2.47E-05	0.009		Х	1
Beryllium	7440-41-7	6.18E-08	1.48E-06	5.41E-04		Х	1
Cadmium	7440-43-9	5.66E-06	1.36E-04	0.050		Х	1
Chromium Compounds		7.21E-06	1.73E-04	0.063		Х	1
Manganese Compounds		1.96E-06	4.69E-05	0.017		Х	1
Mercury	7439-97-6	1.34E-06	3.21E-05	0.012		Х	1
Nickel	7440-02-0	1.08E-05	2.59E-04	0.095		Х	1

COMMENTS:

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

AIR POLLUTANT NETTING WORKSHEET

Revised:12/01/01	NCDENR/Division of Air Quality - Applicat	ion for Air Permit to Construct/Oper	ate	D2
PURPOSE OF NETTING: X	AIR TOXICS PSD (100/250 tons per year) PSD SIGNIFICANT LEVELS		
AIR POLLUTANT:	All (See Form D1) CA	S NO.:		
EMISSION SOURCE ID NOS.:	Facility-Wide			
SEC	TION A - EMISSION OFFSETTING AN	ALYSIS FOR MODIFIED/NEW	SOURCES	
Summarize in this section	EMISSIC	NS - USE APPROPRIATE COLUMNS	ONLY	
using the B forms	LB/YEAR	LB/DAY	LB/HR	
MODIFICATION	See comments below			
INCREASE				
- MINUS -	- MINUS -	- MINUS -	- MINUS -	
MODIFICATION				
DECREASE				
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =	
NET CHANGE				
FROM MODIFICATION				
	SECTION B - FACILITY-WIDE E	MISSION NETTING ANALYSI	S	
CREDITABLE	See comments below			
INCREASE				
- MINUS -	- MINUS -	- MINUS -	- MINUS -	
CREDITABLE				
DECREASE				
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =	
NET CREDITABLE				
CHANGE				
	SECTION C - FACILIT	Y-WIDE EMISSIONS		
TOTAL FACILITY	See comments below			
EMISSIONS				
TPER LEVELS (2Q .0711)				
CHECK HERE IF AN AIR DISPERS	SION MODELING ANALYSIS IS REQUIRED			
COMMENTS:				
permitting requirements pe	proposed for the Northampton Comp er 15A NCAC 02Q.0702(a)(25), as the MBtu/hr, and they will be the only so	aggregate allowable natural	gas heat input value for	these

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED: 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

D4

		EMPTED PER 2Q .	0102 OR
	INSIGNIFICANT ACTIVITIES	PER 2Q .0503 FOI	R TITLE V SOURCES
	DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY
1.	Natural Gas Boiler (used for building heat)	5.25 MMBtu/hr	Per 15A NCAC 2Q.0102(h)(1)(B), fuel combustion equipment (excluding internal combustion engines) firing exclusively natural gas or liquefied petroleum gas or a mixture of these fuels.
2.	TK-1, Pipeline Liquids Storage Tank, will receive and store pipeline liquids captured by the station's separators and filter-separator.	1,000 gallons	Per 15A NCAC 02Q.0102(g)(14)(B), sources for which there are no applicable requirements.
3.	TK-2, Hydrocarbon Waste Tank, will receive and store used oil used in oil-filled operational equipment throughout the facility.	2,500 gallons	Per 15A NCAC 02Q.0102(g)(4), storage tanks with no applicable requirements other than Stage I controls pursuant to 15A NCAC 02D.0928, Gasoline Service Stations Stage I.
4.	TK-3, Aqueous Ammonia Storage Tank, will be used to supply aqueous ammonia to the SCRs.	13,400 gallons	Per 15A NCAC 02Q.0102(g)(4), storage tanks with no applicable requirements other than Stage I controls pursuant to 15A NCAC 02D.0928, Gasoline Service Stations Stage I.
5.	TK-4, Odorant Storage Tank	6,000 gallons	Per 15A NCAC 02Q.0102(g)(14)(B), sources for which there are no applicable requirements.
6.			
7.			
8.			
9.			
10.			

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

RE	VISED: 12/01/01 NCDENR/Division of Air Quality - Application for Air	Permit to Construct/Operate	D5								
	PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUF	· · · · · · · · · · · · · · · · · · ·									
	DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDI										
	NECESSARY TO SUPPORT AND CLARIFY CALCUL FOLLOWING SPECIFIC ISSUE										
Α	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B) - SHOW CA AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY A SUPPORT MATERIAL BALANCE CALCULATIONS.	CULATIONS USED, INCLUDING EMISSION FACTORS, MATER THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION	OF POTENTIAL								
В	SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE NO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICU RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARD POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDER FACILITY. SUBMIT ANY REQUIRED TO DOCUMENT COMPLIANCE WITH ANY REGULATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CONTROL PROCESSION OF THE PROPERTY OF THE PR	I OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING ARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION IS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOL AL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABI ULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEN	G I PROCESS OF JS AIR LE TO THIS								
С	CONTROL DEVICE ANALYSIS (FORM C) - PROVIDE A TECHNICAL EVALUATION VON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIC PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDA TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOMONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.	NS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATIN FIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICA AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PA	G TION) CRITICAL ARTICULAR								
	PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS.										
	PROFESSIONAL ENGINEERING SEAL - PURSUANT TO 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).										
	I,, attest that this app	lication for									
	has been reviewed by me ar	d is accurate, complete and consistent with the information	supplied								
	in the engineering plans, calculations, and all other supporting documentation knowledge the proposed design has been prepared in accordance with the appackage may have been developed by other professionals, inclusion of these in	olicable regulations. Although certain portions of this submit materials under my seal signifies that I have reviewed this m	tal aterial								
	and have judged it to be consistent with the proposed design. Note: In accord										
	person who knowingly makes any false statement, representation, or certificati may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,00		or which								
ł	may monado a imo not to oxobod \$ 10,000 as well as own pertantes up to \$20,00	o por violation.									
	(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING)	PLACE NORTH CAROLINA SEAL HER	RE								
- 1	NAME: Jeffrey H. Twaddle, P.E.	125 1.028 0 8 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
	DATE: $\frac{5/12/20/7}{}$		1								
- 1	COMPANY: ERM Southeast, Inc.		f 1 -1 -								
	ADDRESS: 5000 Meridian Blvd., Ste. 300, Franklin, TN 37067										
- 1	SIGNATURE: 615-656-7100	N23231 / 1 1 / 1	-								
ı	PAGES CERTIFIED: Attachment A Form C3 for CT-01-SCR & CT-01-OC,		/								
	CT-02-SCR & CT-02-OC, and										
	CT-03-SCR & CT-03-OC	Mason sanda									
	Attachment C - Potential to Emit Calculations	- E- 작년 4월 2월 2일 - F									
	(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT										
	THAT IS BEING CERTIFIED BY THIS SEAL)										

ATTACHMENT C

POTENTIAL TO EMIT CALCULATIONS

ERM DOMINION - ACP-3 STATION

<u>Table C-1 Permit to Construct Application Project Equipment List ACP Compressor Station 3 - Northampton County, North Carolina</u>

Emission Point ID	Source	Manufacturer	Model/Type	Rated Capacity
CT-01	Compressor Turbine	Solar Turbines	Taurus 70-10802S	10,915 hp
CT-02	Compressor Turbine	Solar Turbines	Centaur 50-6200LS	6,200 hp
CT-03	Compressor Turbine	Solar Turbines	Centaur 40-4700S	4,700 hp
EG-01	Emergency Generator	Caterpillar	G3516B	1,818 hp
EG-02	Emergency Generator	Generac	SG100	148.9 hp
WH-01	Boiler	Hurst	LPW-G-125-60W	5.25 MMBtu/hr
FUG-01	Fugitive Leaks - Blowdowns	=	-	-
FUG-02	Fugitive Leaks - Piping	=	-	-
TK-1	Pipeline Liquids Tank	=	-	1,000 gal
TK-2	Hydrocarbon (Waste Oil) Tank			2,500 gal
TK-3	Ammonia Tank			13,400 gal

Table C-2 Potential Emissions From Combustion Sources

ACP Compressor Station 3 - Northampton County, North Carolina

Turbine Operational Parameters:

Normal Hours of Operation:	8,677
Hours at Low Load (<50%)	0
Hours of Low Temp. (< 0 deg. F)	50
Hours of Start-up/Shut-down	33.3
Total Hours of Operation (hr/yr):	8,760

Emergency Generator Operational Hours:

Normal Hours of Operation:	100

Boiler/Heater Operational Parameters:

Normal Hours of Operation:	8,760

Pre-Control Potential to Emit

	Power				Criteria Pollutants (tpy)											GHG Em	/)	Ammonia (tpy)	HAP (tpy)	
Combustion Sources	Rating	Units	Fuel	NOx	CO	VOC	SO2	Total PM	Total PM10	Total PM2.5	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	14.9	23.8	1.36	1.43	8.41	8.41	8.41	2.42	2.42	2.42	5.99	49,980	3.62	1.26	50,446	5.77	0.525
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	9.25	14.8	0.834	0.894	5.26	5.26	5.26	1.51	1.51	1.51	3.74	31,295	2.26	0.788	31,587	3.58	0.352
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	22.0	25.6	0.702	0.760	4.47	4.47	4.47	1.29	1.29	1.29	3.18	26,718	1.92	0.671	26,966	3.02	0.286
Caterpillar G3516B Egen	1,818	hp	Natural Gas	0.100	0.499	0.108	3.88E-04	0.032	0.032	0.032	0.025	0.025	0.025	0.007	101	0.859	0	122	0	0.018
Generac SG100 Egen	148.9	hp	Natural Gas	4.92E-05	9.85E-04	0.003	3.18E-05	0.003	0.003	0.003	0.002	0.002	0.002	0.001	759	0.015	0	759	0	0.002
Boiler	5.25	MMBtu/hr	Natural Gas	1.13	1.89	0.124	0.014	0.171	0.171	0.171	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
Tota	al (tons/yr)			47.3	66.6	3.13	3.10	18.3	18.3	18.3	5.29	5.29	5.29	13.1	111,559	8.72	2.77	112,602	12.4	1.23

Turbine Control Efficiencies

Control Technology	NOx	CO	VOC
Selective Catalytic Reduction (Centaur 40)	80%	-	-
Selective Catalytic Reduction (All Others)	44%	-	-
Oxidation Catalyst (Centaur 40)	-	90%	50%
Oxidation Catalyst (All Others)	-	80%	50%

Post-Control Potential to Emit

	Power				Criteria Pollutants (tpy)											GHG Em	Ammonia (tpy)	HAP (tpy)		
Combustion Sources	Rating	Units	Fuel	NOx	CO	VOC	SO2	Total PM	Total PM10	Total PM2.5	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	10915	hp	Natural Gas	8.25	4.76	0.680	1.43	8.41	8.41	8.41	2.42	2.42	2.42	5.99	49,980	3.62	1.26	50,446	5.77	0.525
Solar Centaur 50L Turbine	6200	hp	Natural Gas	5.14	2.96	0.417	0.894	5.26	5.26	5.26	1.51	1.51	1.51	3.74	31,295	2.26	0.788	31,587	3.58	0.352
Solar Centaur 40 Turbine	4700	hp	Natural Gas	4.39	2.56	0.351	0.760	4.47	4.47	4.47	1.29	1.29	1.29	3.18	26,718	1.92	0.671	26,966	3.02	0.286
Caterpillar G3516B Egen	1818	hp	Natural Gas	0.100	0.499	0.108	3.88E-04	0.032	0.032	0.032	0.025	0.025	0.025	0.007	101	0.859	0	122	0	0.018
Generac SG100 Egen	148.9	hp	Natural Gas	4.92E-05	9.85E-04	0.003	3.18E-05	0.003	0.003	0.003	0.002	0.002	0.002	0.001	759	0.015	0	759	0	0.002
Boiler	5.25	MMBtu/hr	Natural Gas	1.13	1.89	0.124	0.014	0.171	0.171	0.171	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
Tota	al (tons/yr)			19.0	12.7	1.68	3.10	18.3	18.3	18.3	5.29	5.29	5.29	13.1	111,559	8.72	2.77	112,602	12.4	1.23

(1) Turbine emissions are calculated by the following formula: ER * Run Hours / 2000 * (1 - Control Efficiency)□

ER = Emission Rate for particular equipment and pollutant (lbs/hr)

2000 = the amount of lbs in a ton

(2) Emergency Generator emissions are calculated by the following formula: Power Rating * Run Hours * EF / 2000

Power Rating = Engine hp rating (hp)
EF = Emission Factor from either manufacturer's data or AP-42 (lb/hp-hr)

2000 = the amount of lbs in a ton

(3) Boiler/Heater emissions calculated by the following formula: EF * Power Rating * Run Hours / HHV / 2000

EF = AP-42 Emission Factor (lb/MMSCF)

Power Rating = Boiler/Heater Heat Capacity (MMBtu/hr) HHV = Natural Gas High Heating Value (1020 MMBtu/MMSCF)

- (4) Turbines are equipped with Selective Catalytic Reduction (SCR) and oxidation catalyst for control of NOx (44%), CO (80%), and VOC (50%)
- (5) Taurus Centaur 40 oxidation catalyst has a control of 90% for CO
- (6) Emergency generator engine hp taken from manufacturer data
- (7) Boiler assumed to have low-NOx burners
- (8) See the "HAP Emissions" worksheet for a more detailed breakdown of HAP emissions
- (9) See Emissions Factors table for Emissions Factors for each operating scenario.
- (10) Each start-up/shut-down event assumed to last 10 minutes

ACP Compressor Station 3 - Northampton County, North Carolina

Start-up Emissions

	Power			Start-up	Cri	teria Pollutants (GHG Emissions (tpy)			
Combustion Sources	Rating	Units	Fuel	Events	NOx	СО	VOC	CO2	CH4	CO2e
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	100	0.040	3.66	0.042	25.95	0.168	30.2
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	100	0.040	3.46	0.040	23.45	0.160	27.45
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	100	0.035	3.22	0.037	19.60	0.148	23.30
	Total (tons	0.115	10.33	0.119	69.0	0.476	80.9			

Shutdown Emissions

	Power			Shutdown	Cri	teria Pollutants (GHG Emissions (tpy)			
Combustion Sources	Rating	Units	Fuel	Events	NOx	CO	VOC	CO2	CH4	CO2e
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	100	0.055	4.67	0.053	28.8	0.212	34.1
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	100	0.020	1.770	0.020	10.85	0.080	12.85
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	100	0.015	1.510	0.017	9.05	0.068	10.75
	0.090	7.950	0.090	48.7	0.360	57.7				

Compressor Blowdown Emissions

Source Designation:	FUG-01

Blowdown Start-up Events

Blowdown from Start-up	38000	scf/event
Volumetric flow rate	385	scf-lbmol
Methane Molecular Weight	16	lb-lbmol
Methane Percent Weight	93%	%
Start-up Blowdown	1691	lb/event

Blowdown Shutdown Events

Blowdown from Shutdown	63000	scf/event
Volumetric flow rate	385	scf-lbmol
Methane Molecular Weight	16	lb-lbmol
Methane Percent Weight	93%	%
Shutdown Blowdown	2803	lb/event

0.205 18.28 0.209 117.7 0.836 139

Gas Composition

Pollutant	Molecular Weight (lb/lb-mol)	Molar (Volume) Fraction (mol%)	Wt. Fraction ^[1] (wt. %)
Total Stream Molecular Weight	16.89		
Non-VOC			
Carbon Dioxide	44.01	1.041%	2.71%
Nitrogen	28.01	0.994%	1.65%
Methane	16.04	94.21%	89.47%
Ethane	30.07	2.923%	5.20%
VOC			
Propane	44.10	0.546%	1.43%
n-Butane	58.12	0.084%	0.29%
IsoButane	58.12	0.079%	0.27%
n-Pentane	72.15	0.022%	0.09%
IsoPentane	72.15	0.024%	0.10%
n-Hexane	78.11	0.032%	0.15%
n-Heptane	100.21	0.049%	0.29%
Total VOC Fraction			2.62%
Total HAP Fraction			0.15%

Blowdown from Startup Events

	Start-up		GI			
Combustion Sources	Events	voc	CO2	CH4	CO2e	HAPs
Solar Taurus 70 Turbine	100	2.216	2.293	75.634	1,893	0.125
Solar Centaur 50L Turbine	100	2.216	2.293	75.634	1,893	0.125
Solar Centaur 40 Turbine	100	2.216	2.293	75.634	1,893	0.125
Total (tons/yr)	6.649	6.880	227	5,679	0.375	

Blowdown from Shutdown Events

	Startup		GI	(tpy)		
Combustion Sources	Events	voc	CO2	CH4	CO2e	HAPs
Solar Taurus 70 Turbine	100	3.675	3.80	125.39	3,139	0.207
Solar Centaur 50L Turbine	100	3.675	3.80	125.39	3,139	0.207
Solar Centaur 40 Turbine	100	3.675	3.80	125.39	3,139	0.207
Total (tons/yr)	11.024	11.41	376	9,416	0.622	

Site-Wide Blowdown Events

Site-Wide Blowdown	2,000,000	scf/event
Volumetric flow rate	385	scf-lbmol
Methane Molecular Weight	16	lb-lbmol
Methane Percent Weight	93%	%
Site-Wide Blowdown	88.990	lb/event

Blowdown from Site Wide Events

			GHG Emissions (tpy)				
VOC	CO2	CH4	CO2e	HAPs			
1.167	1.21	39.8	996	0.066			
1.167	1.21	39.8	996	0.066			
	1.167	1.167 1.21	1.167 1.21 39.8	1.167 1.21 39.8 996			

Total Blowdown Emissions (tons/yr)	18.8	19.5	643	16,092	1.06

Table C-4 Combustion Source Criteria Pollutant Emission Factors

ACP Compressor Station 3 - Northampton County, North Carolina

	Solar Turbine Normal Operation Emission Factors (lb/hr)														
Equipment Name	Fuel	Units	NOx	co	voc	SO2	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3
Solar Centaur 40 Turbine	Natural Gas	lb/hr	4.70	5.70	0.160	0.17	0.29	0.29	0.29	0.73	6100	0.44	0.15	6157	0.690
Solar Centaur 50L Turbine	Natural Gas	lb/hr	1.98	3.30	0.190	0.20	0.35	0.35	0.35	0.85	7145	0.52	0.18	7212	0.818
Solar Taurus 70 Turbine	Natural Gas	lb/hr	3.18	5.30	0.310	0.33	0.55	0.55	0.55	1.37	11411	0.83	0.29	11517	1.317
			1.7808	1.06	0.155										
			1.1088	0.66	0.095										

Notes

- 0.94 (1) Pre-Control Emission Rates for NOx, CO, VOC, PMF, PMC, and CO2 taken from Solar Turbine Data at 100% load and 0 degrees F
- (2) Emission Factors for SO2, CH4, N2O taken from AP-42 in (lbs/MMBtu) and multiplied by turbine fuel throughput by Solar Turbine at 100% load and 0 degree F to get Emission Rates

0.08

(3) Assume PMF=PMF-10=PMF-2.5; Filterable and Condensable based on Solar Turbine Emission Factor and ratio of AP-42 Table 3.1 factors

0.57

- (4) NH3 emission rates based on a 10 ppm ammonia slip from the SCR based on manufacturer information
- (5) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together
- (6) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR Part 98]

	Solar	Turbine A	Iternate Oper	ration Emis	sion Facto	rs (lb/hr)		
			< (0 degrees F		Solar 1	urbine Low Load	I F Operation
Equipment Name	Fuel	Units	NOx	CO	VOC	NOx	CO	VOC
Solar Centaur 40 Turbine	Natural Gas	lb/hr	62.7	34.2	0.320	36.6	2,280	6.40
Solar Centaur 50L Turbine	Natural Gas	lb/hr	26.4	19.8	0.380	15.4	1,320	7.60
Solar Taurus 70 Turbine	Natural Gas	lb/hr	42.4	31.8	0.620	24.7	2,120	12.4
			23.744	6.36	0.31			
			14.784	3.96	0.19			
			12.533333	3.42	0.16			

Notes

- (1) Pre-Control low temperature Emission Rates for NOx, CO, VOC. Conservatively assume 120 ppm NOx, 150 ppm CO, and 5 ppm VOC (10% of UHC) per Table 2 of Solar PIL 167
- (2) Pre-Control low load Emission Rates for NOx, CO, VOC. Conservatively assume 70 ppm NOx, 10,000 ppm CO, and 100 ppm VOC (10% of UHC) per Table 4 of Solar PIL 167

	Solar Turbine Start-up and Shutdown Emission Factors (lb/event)														
Start-up EFs								Shutdown EFs							
Equipment Name	Fuel	Units	NOx	CO	VOC	CO2	CH4	CO2e	NOx	CO	VOC	CO2	CH4	CO2e	
Solar Centaur 40 Turbine	Natural Gas	lb/event	0.7	64.4	0.7	392	3.0	466	0.3	30.2	0.3	181	1.4	215	
Solar Centaur 50L Turbine	Natural Gas	lb/event	0.8	69.1	0.8	469	3.2	549	0.4	35.4	0.4	217	1.6	257	
Solar Taurus 70 Turbine	Natural Gas	lb/event	0.8	73.1	0.8	519	3.4	603	1.1	93.4	1.1	575	4.2	681	

- (1) Start-up and Shutdown Emissions based on Solar Turbines Incorporated Product Information Letter 170: Emission Estimates at Start-up, Shutdown, and Commissioning for SoLoNOx Combustion Products (13 June 2012). Emission Estimates do not include SO2, PM, N2O, or any HAPs.
- (2) VOCs assumed to be 20% of UHC and CH4 assumed to be 80% of UHC.
- (3) CO2e emission rate calculated by multiplying each GHG (CO2, CH4) by its Global Warming Potential (GWP) and adding them together
- (4) CO2 GWP = 1; CH4 GWP = 25; [40 CFR Part 98]

	Engine and Boiler Emission Factors														
Equipment Type	Fuel	Units	NOx	co	voc	SO2	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3
Boiler < 100 MMBtu	Natural Gas	lb/MMscf	50	84	5.5	0.6	1.9	1.9	1.9	5.7	120000	2.3	2.2	120713	0.00
1300 KW Caterpillar Egen	Natural Gas	lb/hp-hr	0.0011023	0.00549	0.00119	4.269E-06	0.000278822	0.000278822	0.000278822	7.19565E-05	1.111131	0.009445	0	1	0.00
100 kW Generac Egen	Natural Gas	lb/hp-hr	0.000007	0.00013	0.00037	4.269E-06	0.000278822	0.000278822	0.000278822	7.19565E-05	101.9472	0.001954	0	102	0.00

- (1) Emission factors for natural gas boilers taken from AP-42 Tables 1.4-1 & 1.4-2
- (2) Boiler assumed to have low-NOx burners
- (3) Emission Factors for Space & Water Heaters taken from AP-42 Tables 1.4-1 & 1.4-2
- (4) Emission Factors for 2 SLB engine taken from AP-42 Table 3.2-1
- (5) NOx, CO, VOC, CO2, and CH4 emission factors for Caterpillar Egens taken from Caterpillar Manufacturer data
- (6) NOx, CO, and VOC emission factors for Generac Egens taken from Generac manufacturer statement of exhaust emissions for SCAQMD certification
- (7) SO2, PMF, PMF-10, PMF-2.5, PMC, and N2O Emission factors for Caterpillar Egens taken from AP-42 Table 3.2-1 and converted using manufacturer fuel data
- (8) SO2, PMF, PMF-10, PMF-2.5, PMC, and N2O Emission factors for Generac Egens taken from AP-42 for natural gas combustion
- (9) Assume PMF=PMF-10=PMF-2.5
- (10) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together
- (11) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR 98]

 $\frac{Table\ C\text{--}5\ Hazardous\ Air\ Pollutant\ (HAP)\ Emissions\ From\ Combustion\ Sources}{ACP\ Compressor\ Station\ 3}\ -\ Northampton\ County,\ North\ Carolina$

Quantity @ ACP-3		7 1	AP Emissions (I 1	l.,, l 1 l	1	1	1 1
		Solar Centaur 40 Turbine		Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1300 KW Caterpillar Egen	100 kW Generac Ege
Pollutant	HAP?	4700	6200	10915	5.25	1818	148.9
		hp	hp	hp	MMBTU/hr	hp	hp
		9125	8500	7205			
		Btu/hp-hr	Btu/hp-hr	Btu/hp-hr			
1,1,2,2-Tetrachloroethane	Yes	Dramp in	Diamp iii	Dramp in		0.031	0.003
1,1,2-Trichloroethane	Yes					0.024	0.002
,1-Dichloroethane	Yes					0.018	0.001
1,2,3-Trimethylbenzene	No					0.016	0.001
1,2,4-Trimethylbenzene	No					0.051	0.004
1,2-Dichloroethane	Yes					0.020	0.002
1,2-Dichloropropane	Yes					0.021	0.002
1,3,5-Trimethylbenzene	No					0.008	0.001
1,3-Butadiene	Yes					0.379	0.031
,3-Dichloropropene	Yes					0.020	0.002
2,2,4-Trimethylpentane	Yes					0.391	0.032
2-Methylnaphthalene	No				0.001	0.010	0.001
3-Methylchloranthrene	No				0.000		ļ
7,12-Dimethylbenz(a)anthracene	No No	1	 		0.001	0.004	0.000
Acenaphthene	No No	1	 		0.000	0.001	0.000
Acenaphthylene	No	 			0.000	0.001	0.000 0.294
Acetaldehyde Acrolein	Yes Yes	-	1	-		3.590 3.599	0.294
Anthracene	No Yes		l		0.000	0.000	0.295
Benz(a)anthracene	No	1	 		0.000	0.000	0.000
Benzene	Yes	1	1	1	0.095	0.897	0.000
Benzo(a)pyrene	No	1	1	1	0.000	0.000	0.000
Benzo(b)fluoranthene	No	1			0.000	0.000	0.000
Benzo(e)pyrene	No	1				0.000	0.000
Benzo(g,h,i)perylene	No	İ.,			0.000	0.000	0.000
Benzo(k)fluoranthene	No				0.000	0.000	0.000
Biphenyl	Yes					0.002	0.000
Butane	No				94.685	2.197	0.180
Butyr/Isobutyraldehyde	No					0.202	0.017
Carbon Tetrachloride	Yes		ļ			0.028	0.002
Chlorobenzene	Yes		ļ			0.021	0.002
Chloroethane	Yes		ļ				
Chloroform	Yes		 		0.000	0.0218	0.002
Chrysene	No No	1	 		0.000	0.000	0.000
Cyclohexane	No No	+	 	-		0.142	0.012
Cyclopentane Dibenzo(a,h)anthracene	No No	+	1	-	0.000	0.044	0.004
Dichlorobenzene Dichlorobenzene	Yes	<u> </u>	l		0.000		1
Ethane	No Yes		l		139.774	32.796	2.686
Ethylbenzene	Yes	1	 		100.114	0.050	0.004
Ethylene Dibromide	Yes					0.034	0.003
Fluoranthene	No		İ		0.000	0.000	0.000
luorene	No		İ		0.000	0.001	0.000
ormaldehyde	Yes	541.000	664.779	992.029	3.382	25.534	2.091
Hexane (or n-Hexane)	Yes				81.159	0.206	0.017
ndeno(1,2,3-c,d)pyrene	No				0.000	0.000	0.000
sobutane	No					1.735	0.142
Methanol	Yes					1.147	0.094
Methylcyclohexane	No		ļ			0.156	0.013
Methylene Chloride	Yes		ļ			0.068	0.006
n-Nonane	No	+	 			0.014	0.001
n-Octane	No	1	 		0.000	0.034	0.003
Naphthalene	Yes Yes		<u> </u>		0.028	0.045	0.004
PAH Pentane (or n-Pentane)	Yes No	-	1	-	117.229	0.062 0.708	0.005 0.058
Perylene	No	1	l		111.229	0.000	0.000
Phenanthrene	No	†			0.001	0.002	0.000
Phenol	Yes	1	l	1	0.001	0.002	0.002
Propane	No				72.141	13.276	1.087
Propylene Oxide	Yes						
Pyrene	No				0.000	0.000	0.000
Styrene	Yes					0.025	0.002
Tetrachloroethane	No						
Toluene	Yes				0.153	0.445	0.036
/inyl Chloride	Yes					0.011	0.001
(ylene	Yes					0.124	0.010
Arsenic	Yes				0.009		
Barium	No	<u> </u>	ļ		0.198		
Beryllium	Yes		ļ		0.001		
Cadmium	Yes		 		0.050		
Chromium	Yes		 		0.063		
Cobalt	Yes		 		0.004		
Copper	No		 	-	0.038		
Manganese Mercury	Yes Yes	-	1	-	0.017 0.012	-	1
Molybdenum	No		l		0.012		
lickel	Yes	1	 		0.050		
Selenium	Yes				0.001		l
/anadium	No	1	l	1	0.104		1
Zinc	No	1			1.308		1
_ead	Yes		İ		0.023		i e
Total HAPs		572.934	704.019	1050.586			
Total HAP/unit (lb/yr	·	573	704	1051	85.1	36.8	3.02
Total HAP/unit (ID/y)							

Hazardous Air Pollutant

Notes:
(1) Emissions above are on a per unit basis
(2) Calculations for the Caterpillar emergency generator assume 100 hours of operation; all other calculations assume 8,760 hours of operation
(3) Heat rates for Solar Turbines taken from Solar Datasheets
(4) Solar turbines have a 50% HAP control efficiency due to the Oxidation Catalyst

				Emission F	actors		1
Pollutant	HAP?	Solar Centaur 40 Turbine	50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1300 KW Caterpillar Egen	100 kW Generad Egen
4.4.0.0. Takanah langah ang	V	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMscf	lb/hp-hr	lb/hp-hr
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Yes Yes					1.7E-07 1.3E-07	1.7E-0
I,1-Dichloroethane	Yes					9.9E-08	9.9E-0
1,2,3-Trimethylbenzene	No					9.0E-08	9.0E-0
1,2,4-Trimethylbenzene	No					2.8E-07	2.8E-0
1,2-Dichloroethane	Yes					1.1E-07	1.1E-0
1,2-Dichloropropane	Yes					1.1E-07	1.1E-0
1,3,5-Trimethylbenzene	No					4.6E-08	4.6E-08
1,3-Butadiene 1,3-Dichloropropene	Yes Yes					2.1E-06 1.1E-07	2.1E-0
2,2,4-Trimethylpentane	Yes					2.2E-06	2.2E-0
2-Methylnaphthalene	No				2.4E-05	5.4E-08	5.4E-0
3-Methylchloranthrene	No				1.8E-06		
7,12-Dimethylbenz(a)anthracene	No				1.6E-05		
Acenaphthene	No				1.8E-06	3.4E-09	3.4E-0
Acenaphthylene Acetaldehyde	No Yes				1.8E-06	8.1E-09 2.0E-05	8.1E-09 2.0E-09
Acrolein	Yes					2.0E-05	2.0E-0
Anthracene	No				2.4E-06	1.8E-09	1.8E-09
Benz(a)anthracene	No				1.8E-06	8.5E-10	8.5E-10
Benzene	Yes				2.1E-03	4.9E-06	4.9E-0
Benzo(a)pyrene	No				1.2E-06	1.4E-11	1.4E-1
Benzo(b)fluoranthene	No No	-	-	-	1.8E-06	2.2E-11	2.2E-1
Benzo(e)pyrene Benzo(g,h,i)perylene	No No	1			1.2E-06	6.0E-11 6.3E-11	6.0E-1
Benzo(k)fluoranthene	No	+			1.8E-06	1.1E-11	1.1E-1
Biphenyl	Yes		1	1		1.0E-08	1.0E-0
Butane	No				2.1E+00	1.2E-05	1.2E-0
Butyr/Isobutyraldehyde	No					1.1E-06	1.1E-06
Carbon Tetrachloride	Yes					1.5E-07	1.5E-07
Chlorobenzene	Yes					1.1E-07	1.1E-07
Chloroethane Chloroform	Yes Yes					1.2E-07	1.2E-07
Chrysene	No				1.8E-06	1.7E-09	1.7E-09
Cyclohexane	No					7.8E-07	7.8E-07
Cyclopentane	No					2.4E-07	2.4E-07
Dibenzo(a,h)anthracene	No				1.2E-06		
Dichlorobenzene	Yes				1.2E-03	4.05.04	105.0
Ethane Ethylbenzene	No Yes				3.1E+00	1.8E-04 2.7E-07	1.8E-04 2.7E-07
Ethylene Dibromide	Yes					1.9E-07	1.9E-07
Fluoranthene	No				3.0E-06	9.2E-10	9.2E-10
Fluorene	No				2.8E-06	4.3E-09	4.3E-09
Formaldehyde	Yes	2.9E-03	2.9E-03	2.9E-03	7.5E-02	1.4E-04	1.4E-04
Hexane (or n-Hexane)	Yes				1.8E+00	1.1E-06	1.1E-06
Indeno(1,2,3-c,d)pyrene	No No				1.8E-06	2.5E-11	2.5E-11
Isobutane Methanol	No Yes					9.5E-06 6.3E-06	9.5E-06 6.3E-06
Methylcyclohexane	No					8.6E-07	8.6E-07
Methylene Chloride	Yes					3.7E-07	3.7E-07
n-Nonane	No					7.8E-08	7.8E-08
n-Octane	No					1.9E-07	1.9E-07
Naphthalene	Yes				6.1E-04	2.5E-07	2.5E-07
PAH Pentane (or n-Pentane)	Yes No		-	 	2.6E+00	3.4E-07 3.9E-06	3.4E-07
Pentane (or n-Pentane) Perylene	No	1		1	2.UE#UU	1.3E-11	1.3E-11
Phenanthrene	No	İ	İ	İ	1.7E-05	9.0E-09	9.0E-09
Phenol	Yes					1.1E-07	1.1E-07
Propane	No				1.6E+00	7.3E-05	7.3E-0
Propylene Oxide	Yes						L
Pyrene	No				5.0E-06	1.5E-09	1.5E-09
Styrene Tetrachloroethane	Yes No		1	1		1.4E-07	1.4E-0
Toluene	Yes			-	3.4E-03	2.5E-06	2.5E-06
Vinyl Chloride+A32	Yes		1	l	5.12 00	6.3E-08	6.3E-08
Xylene	Yes		<u> </u>			6.8E-07	6.8E-07
Arsenic	Yes		_		2.0E-04		
Barium	No	<u> </u>			4.4E-03		4
Beryllium	Yes				1.2E-05		-
Cadmium	Yes				1.1E-03		4
Chromium Cobalt	Yes Yes		1	l	1.4E-03 8.4E-05		1
Copper	No			1	8.4E-05 8.5E-04		1
Manganese	Yes	1	1	1	3.8E-04		1
Mercury	Yes		İ		2.6E-04]
Molybdenum	No				1.1E-03]
Nickel	Yes				2.1E-03		1
Selenium	Yes				2.4E-05		4
Vanadium	No	1			2.3E-03		-
Zinc	No	1	1	ļ	2.9E-02		4
Lead	Yes	3.1E-03	3.1E-03	3.1E-03	5.0E-04		

Hazardous Air Pollutant

Notes:
(1) Emission factors for Solar and Capstone natural gas turbines from AP-42 Table 3.1-3
(2) Emission factors for natural gas boilers from AP-42 Tables 1.4-2, 1.4-3, and 1.4-4
(3) Emission factors for 2 SLB natural gas engines and Caterpillar and Generac natural gas emergency generators taken from AP-42 Table 3.2-1
(4) Emission factors for Solar natural gas turbines and Caterpillar and Generac natural gas emergency generators converted using 1 KWh = 3412 Btu and 1 kw = 1.341 hp
(5) Emission Factors (lb/MMBtu) for Formaldehyde and Total HAPs for Solar Turbines from Solar PIL 168

Table C-7 Potential Emissions From Fugitive Leaks

ACP Compressor Station 3 - Northampton County, North Carolina

Fugitive Emissions (FUG)

Source Designation:	FUG-02

Operational Parameters:

Annual Hours of Operation (hr/yr):	8,760

Compressor Fugitive Emissions Rate

quipment	Service	CH4 Emission Factor ^[1]		Fug Emission Rate
quipment	Service	ton/comp-hr	Fraction ^[1]	tpy
Solar Turbine	Gas	2.67E-02	0.934	250.2

^{1.} Default methane basis and emission factor taken from Table 6-6 of Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, API, August 2009.

Pipeline Natural Gas Fugitive Emissions

Equipment	Service	Emission Factor ^[1]	Source Count ^[2]	Total HC Poter	ntial Emissions	VOC Weight	VOC Emissions	CO ₂ Weight	CO ₂ Emissions	CH ₄ Weight	CH ₄ Emissions	HAP Weight	HAP Emissions
Equipment	Service	lb/hr/source	Source Count	lb/hr	tpy	Fraction	tpy	Fraction	tpy	Fraction	tpy	Fraction	tpy
Valves	Gas	4.50E-03	646	2.91	12.7	0.026	0.334	0.0271	0.345	0.895	11.4	1.48E-03	1.88E-02
Pump Seals	Gas	2.40E-03		0.00	0.00	0.026	0.00	0.0271	0.00	0.895	0.00	1.48E-03	0.00E+00
Others (compressors and others)	Gas	8.80E-03	3	0.03	0.12	0.026	0.00	0.0271	0.00	0.895	0.10	1.48E-03	1.71E-04
Connectors	Gas	2.00E-04	1	2.00E-04	8.76E-04	0.026	2.30E-05	0.0271	2.38E-05	0.895	7.84E-04	1.48E-03	1.30E-06
Flanges	Gas	3.90E-04	340	0.133	0.581	0.026	0.015	0.0271	0.016	0.895	0.520	1.48E-03	8.59E-04
Open-ended lines	Gas	2.00E-03		0.00	0.00	0.026	0.00	0.0271	0.00	0.895	0.00	1.48E-03	0.00E+00
			Total	3	13	-	0.4	-	0.4	-	12.015	-	0.02

 $^{1. \} EPA\ Protocol\ for\ Equipment\ Leaks\ Emissions\ Estimate\ (EPA-453/R-95-017)\ Table\ 2-4:\ Oil\ and\ Gas\ Production\ Operations\ Emission\ Factors.$

Sample Calculations:

Potential Emissions (lb/hr) = Emission Factor (lb/hr/source) * Source Count

 $Potential\ Emissions\ (tons/yr) = (lb/hr)_{Fotential} \times Hours\ of\ Operation\ (hr/yr) \times (1\ ton/2,000\ lb).$

^{2.} Sample calculations: Hours of operation (hr/yr) * EF (ton / compressor -hr) / Methane Fraction

^{2.} Component count based on Basic Systems Engineering Estimate.

Table C-8 Tank Emissions

ACP Compressor Station 3 - Northampton County, North Carolina

Source Designation:	TK-1, TK-2, TK-3
---------------------	------------------

Tank Parameters

Source	Type of Tank	Contents	Capacity	Throughput	Tank Diam.	Tank Length	Paint Color	Paint
Source	Type of Tank	Contents	(gal)	gal/yr	ft	ft	Tailit Coloi	Condition
TK-1	Horizontal, fixed	Produced Fluids	1,000	5,000	4.12	10	Light Grey	Good
TK-2	Horizontal, fixed	Lube Oil	2,500	12,500	4.61	20	Light Grey	Good

Total Emissions

		VOC Emissions										
Source	Flashing Losses		Working	Losses	Breathing	Losses	Total Losses					
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
TK-1 ^[1]							0.033	0.145				
TK-2 ^[2]	NA	NA	1.29E-06	5.65E-06	3.72E-06	1.63E-05	5.01E-06	2.19E-05				

- 1. Losses were calculated for TK-1 using E&P Tanks Software. See attached for output.
- 2. Losses were calculated for TK-2 using EPA's TANKS 4.09d software with default breather vent settings.
- 3. Losses (Emissions) from TK-3 13,400-gallon Ammonia tank assumed to be insignficant.

<u>Table C-9 Project Potential Emissions</u> ACP Compressor Station 3 - Northampton County, North Carolina

				С	riteria Poll	utants (tp	y)				GHG Emi	ssions (tpy	')	Ammonia (tpy)	HAP (tpy)
Combustion Sources	ID	NOx	CO	VOC	SO2	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	N2O	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	CT-01	8.35	13.1	0.775	1.43	2.42	2.42	2.42	5.99	50,035	4.00	1.26	50,511	5.77	0.525
Solar Centaur 50L Turbine	CT-02	5.20	8.19	0.477	0.894	1.51	1.51	1.51	3.74	31,329	2.50	0.788	31,627	3.58	0.352
Solar Centaur 40 Turbine	CT-03	4.44	7.29	0.405	0.760	1.29	1.29	1.29	3.18	26,747	2.14	0.671	27,000	3.02	0.286
Caterpillar G3516B Egen	EG-01	0.100	0.499	0.108	3.88E-04	0.025	0.025	0.025	0.007	101	0.859	0	122	0	0.018
Generac SG100 Egen	EG-02	4.92E-05	0.001	0.003	3.18E-05	0.002	0.002	0.002	0.001	759	0.015	0	759	0	0.002
Boiler	WH-01	1.13	1.89	0.124	0.014	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
Fugitive Leaks - Blowdowns	FUG-01	-	-	18.8	-	-	-	-	-	19.5	643		16,092	-	1.06
Fugitive Leaks - Piping	FUG-02	-	-	0.352	-	-	-	-	-	0.4	12	-	301	-	0.02
Pipeline Liquids Tank	TK-1	-	-	0.145	-	-	-	-	-	-	-	-	-	-	-
Hydrocarbon (Waste Oil) Tank	TK-2	-	-	2.19E-05	-	-	-	-	-	-	-	-	-	-	-
Total (tons/yr)		19.2	31.0	21.2	3.10	5.29	5.29	5.29	13.1	111,696	664	2.77	129,133	12.4	2.31

Tank 1 Emissions.txt

```
*******************
     Project Setup Information
************************
Project File
                         : M:\0345197 DRS ATL Coast Pipe.PR\T501 Air Permit\ACP &
SHP-Permitting\Air Permitting Round 2\Round 5\ACP-1 - Marts\Aug 2016 - EG and Tank Replacements\TK-1 - 05152017 Update to Throughput.ept Flowsheet Selection : 0il Tank with Separator
Calculation Method
Control Efficiency
                         : AP42
Control Efficiency : 100.0%
Known Separator Stream : Low Pressure Gas
Entering Air Composition : No
Date
                         : 2017.06.05
******************
      Data Input
*************************
Separator Pressure
                         : 552.00[psig]
Separator Temperature
                        : 77.00[F̈́]
Molar GOR
                        : 0.0500
Ambient Pressure
Ambient Temperature
                        : 14.70[psi a]
: 70.00[F]
: 0.8990
C10+ SG
C10+ MW
                         : 166.00
-- Low Pressure Gas
          Component mol %
   No.
                               0.0000
         H2S
   1
   2
          02
                               0.0000
   3
          C02
                               0.5112
                               0. 5295
   4
          N2
   5
                              94.0604
          C1
   6
          C2
                               4.7199
   7
          C3
                               0.1590
   8
          i -C4
                               0.0099
   9
                               0.0099
          n-C4
   10
                               0.0000
          i -C5
   11
          n-C5
                               0.0000
   12
                               0.0000
          C6
   13
          C7+
                               0.0000
   14
          Benzene
                               0.0000
                               0.0000
   15
          Tol uene
   16
          E-Benzene
                               0.0000
                               0.0000
   17
          Xyl enes
                               0.0000
          n-C6
   18
          224Tri methyl p
                               0.0000
   19
   C7+ Molar Ratio: C7 :
                             C8 :
                                       C9 :
                                                 C10+
                   C/ :
1. 0000
                             1. 0000
                                       1.0000
                                                 1.0000
-- Sales Oil
Production Rate : 0.3[bbl/day]
```

Page 1

Days of Annual Oper API Gravity Reid Vapor Pressure Bulk Temperature	ration : 365 fd	ank 1 Emissions.txt days/year] osia] [F]
Tank and Shell D	ata	
Di ameter Shell Height Cone Roof Slope Average Liquid Heig Vent Pressure Range Solar Absorbance	: 4.12[f : 10.00[: 0.06 ght : 5.00[f : 0.06[p : 0.54	ft] ft] ft] osi]
Meteorological D)ata	
Page 1		E&P TANK
City Ambient Pressure Ambient Temperature Min Ambient Tempera Max Ambient Tempera Total Solar Insolat	: Charle : 14.70[: 70.00[:ture : 44.00[:ture : 65.50[:ion : 1123.0	eston, WV [psi a] F] F] F] O[Btu/ft^2*day]
***** * Calculation R	Results	******************
Emission Summary	,	
Item Total HAPs Total HC	Uncontrolled [ton/yr] 0.000 0.174 0.157	[lb/hr] 0.000 0.040
Uncontrolled Recove	ery Info.	
Vapor HC Vapor GOR	8.5700 x1E-3 8.0800 x1E-3 26.29	[MSCFD] [MSCFD] [SCF/bbl]
Emission Composi	ti on	
No Component 1 H2S 2 02 3 C02 4 N2 5 C1 6 C2 7 C3 8 i-C4 9 n-C4 10 i-C5 11 n-C5	Uncontrolled [ton/yr] 0.001 0.000 0.009 0.000 0.017 0.013 0.032 0.013 0.042 0.017 0.020	Uncontrolled [lb/hr] 0.000 0.000 0.002 0.000 0.004 0.003 0.007 0.003 0.010 0.004 0.005 Page 2

12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Tol uene 19 E-Benzene 20 Xyl enes 21 n-C6 22 224Tri methyl p	0. 006 0. 006 0. 002 0. 000 0. 000 0. 000 0. 000 0. 000 0. 004 0. 000	ank 1 Emiss 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000	si ons. txt			
Total Stream Data	0. 182	0.042				
No. Component	 MW	LP 0i I	Flash Oil	Sale Oil	Flash Gas	- W&S Gas
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34. 80	0. 0508	0. 0349	0. 0010	0. 6834	0. 0657
0. 5435 2 02	32. 00	0.0000	0. 0000	0. 0000	0. 0000	0. 0000
0. 0000 3 C02	44. 01	0. 2437	0. 0907	0.0000	6. 3467	0. 0001
4. 9092 4 N2	28. 01	0. 0102	0. 0005	0.0000	0. 3990	0. 0001
0. 3087 5 C1	16. 04	0. 9543	0. 1475	0.0000	33. 1362	0. 0001
25. 6311 6 C2	30. 07	0. 6701	0. 3531	0.0000	13. 3133	0. 0001
10. 2979 7 C3	44. 10	2. 1827	1. 7648	0. 3098	18. 8508	12. 6125
17. 4378 8 i -C4	58. 12	1. 1269	1. 0450	0. 5408	4. 3934	9. 3522
5. 5165 9 n-C4	58. 12	4. 6091	4. 4100	2. 8709	12. 5490	34. 3185
17. 4797 10 i -C5	72. 15	3. 1066	3. 0997	2. 7402	3. 3810	13. 0110
5. 5621 11 n-C5	72. 15	5. 0558	5. 0823	4. 7421	4. 0000	16. 4491
6. 8196 12 C6	86. 16	4. 1726	4. 2520	4. 3903	1. 0044	4. 6741
1. 8355 13 C7	100. 20	10. 3655	10. 6043	11. 2777	0. 8388	4. 1346
1. 5853 Page 2					E&	P TANK
14 C8 0. 5426	114. 23	10. 8426	11. 1074	11. 9365	0. 2806	1. 4375
15 C9 0. 0979	128. 28	5. 5127	5. 6497	6. 0913	0. 0497	0. 2624
0. 0979 16 C10+ 0. 0200	166. 00	45. 9695	47. 1217	50. 8962	0. 0099	0. 0544
17 Benzene 0. 1438	78. 11	0. 5685	0. 5808	0. 6114	0. 0778	0. 3692
18 Tol uene 0. 0155	92. 13	0. 2132	0. 2183	0. 2341	0. 0082	0. 0407
19 E-Benzene 0. 0017	106. 17	0. 0711	0. 0729	0. 0785	0. 0009	0. 0046
20 Xyl enes 0. 0146	106. 17	0. 6802	0. 6971	0. 7513	0. 0075	0. 0387
21 n-C6 1. 2368	86. 18	3. 5939	3. 6672	3. 8242	0. 6694	3. 1745
1. 2000		Page	3			

Page 3

		ank 1 Emis				
22 224Trimethylp	114. 24	0.0000	0. 0000	0. 0000	0. 0000	0. 0000
0. 0000						
MW		123. 89	126. 03	130. 08	38. 64	65. 28
44. 68						
Stream Mole Ratio		1.0000	0. 9755	0. 9684	0. 0245	0.0072
0. 0316		_				
Heating Value	[BTU/SCF]	J			2044. 13	3627. 44
2402. 74	[C /A:	1			1 00	2 25
Gas Gravity 1.54	[Gas/Air]	l			1. 33	2. 25
Bubble Pt. @ 100F	[psi a]	56. 28	19. 66	5. 57		
DVD @ 100F	[noi o]	104 75	70.00	25 25		
RVP @ 100F	[psi a]	126. 75	78. 89	35. 25		
Spec. Gravity @ 100F	:	0.800	0. 803	0. 811		

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK-2 West Virginia

State: Company: Type of Tank: Description: Horizontal Tank

Used Oil Aboveground Storage Tank

Tank Dimensions
Shell Length (ft):
Diameter (ft):
Volume (gallons):
Turnovers: 20.00 4.61 2,500.00 Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n): 12,500.00

Paint Characteristics Shell Color/Shade: Shell Condition Gray/Light Good

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0 Report Page 2 of 6

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-2 - Horizontal Tank

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Avg. Min. Max.		Weight.	Fract.	Fract.	Weight	Calculations
Used Oil	All	61.57	52.97	70.18	57.22	0.0001	0.0001	0.0001	380.0000			200.00	Option 1: VP60 = .0001 VP70 = .0001

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-2 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0326
Vapor Space Volume (cu ft):	212.6288
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0618
Vented Vapor Saturation Factor:	1.0000
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	212.6288
Tank Diameter (ft):	4.6100
Effective Diameter (ft):	10.8375
Vapor Space Outage (ft):	2.3050
Tank Shell Length (ft):	20.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	380.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0001
Daily Avg. Liquid Surface Temp. (deg. R):	521.2427
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	54.9833
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	516.8933
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	1 250 5726
Factor (Btu/sqft day):	1,250.5726
Vapor Space Expansion Factor	0.0040
Vapor Space Expansion Factor:	0.0618
Daily Vapor Temperature Range (deg. R):	34.4127
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0001
Vapor Pressure at Daily Minimum Liquid	0.0004
Surface Temperature (psia):	0.0001
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	0.0001
Daily Avg. Liquid Surface Temp. (deg R):	521.2427
Daily Min. Liquid Surface Temp. (deg R):	512.6395
Daily Max. Liquid Surface Temp. (deg R):	529.8458
Daily Ambient Temp. Range (deg. R):	21.5333
	21.5555
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	1.0000
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0001
Vapor Space Outage (ft):	2.3050
Working Loccos (lb):	0.0113
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	380.0000
	380.0000
Vapor Pressure at Daily Average Liquid	0.0001
Surface Temperature (psia):	
Annual Net Throughput (gal/yr.): Annual Turnovers:	12,500.0000 5.0000
Turnover Factor:	1.0000
	4.6100
Tank Diameter (ft): Working Loss Product Easter:	
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.0439
. o.a. 20000 (ib).	0.0400

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-2 - Horizontal Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Used Oil	0.01	0.03	0.04

ATTACHMENT D

VENDOR SPECIFICATIONS

ERM DOMINION - ACP-3 STATION

Solar Turbines Emissions Estimates

Taurus 70-10802S

Assumptions: pipeline natural gas, sea level, 4"/4" inlet/outlet losses, nominal performance

50% load	-	J ,	, , , , ,													
00701000		fuel flow,	Thermal	NOx	NOx	СО	СО	UHC	UHC	VOC	voc	CO2	I PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	HP	mmbtu/hr LHV	Eff, %	(ppm)	(lb/hr)	(ppm)	(lb/hr)	(ppm)	(lb/hr)	(ppm)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	5941	63.54	23.79	9	2.3	25	3.9	25	2.2	2.5	0.2	8321	0.02	1.4	910	199,373
59	5430	56.92	24.27	9	2.0	25	3.4	25	2.0	2.5	0.2	7407	0.02	1.3	991	170,275
100	4341	49.58	22.28	9	1.7	25	3.0	25	1.7	2.5	0.2	6336	0.02	1.1	1045	149576
75% load																
Temp, F	НР	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 lb/hr	PM10/2.5 lb/mmbtu		Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	8912	76.91	29.49	9	2.8	25	4.7	25	2.7	2.5	0.3	10063	0.02	1.7	898	224,735
59	8145	68.47	30.27	9	2.5	25	4.2	25	2.4	2.5	0.2	8905	0.02	1.5	957	194,658
100	6512	59.08	28.05	9	2.1	25	3.5	25	2.0	2.5	0.2	7544	0.02	1.3	1019	165855
100% load																
Temp, F	НР	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 lb/hr	PM10/2.5 lb/mmbtu	PM10/2.5 lb/hr	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	11882	87.27	34.64	9	3.2	25	5.3	25	3.1	2.5	0.3	11411	0.02	1.9	864	366,922
59	10860	79.24	34.87	9	2.8	25	4.8	25	2.8	2.5	0.3	10301	0.02	1.7	908	334,207
100	8683	68.40	32.30	9	2.4	25	4.1	25	2.3	2.5	0.2	8730	0.02	1.5	945	298619

Solar Turbines Emissions Estimates

Centaur 50-6200LS

	pipeiine	natural gas, 150'	elevation, 5	76 IIIIet/	outlet los	363, 11011	illiai perio	mance								
50% load																
Temp, F	НР	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 lb/hr	PM10/2.5 lb/mmbtu	PM10/2.5 lb/hr	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	3321	39.27	21.54	9	1.4	25	2.4	25	1.4	2.5	0.1	5155	0.02	0.9	837	139,384
59	3006	35.20	21.73	9	1.3	25	2.1	25	1.2	2.5	0.1	4591	0.02	0.8	915	119,683
100	2426	30.76	20.06	9	1.1	25	1.8	25	1.0	2.5	0.1	3938	0.02	0.7	966	103305
75% load																
Temp, F	HP	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 lb/hr	PM10/2.5 lb/mmbtu	PM10/2.5 lb/hr	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	4981	47.21	26.85	9	1.7	25	2.9	25	1.6	2.5	0.2	6189	0.02	1.0	849	152,889
59	4509	42.05	27.29	9	1.5	25	2.5	25	1.5	2.5	0.2	5479	0.02	0.9	908	133,124
100	3639	36.70	25.23	9	1.3	25	2.2	25	1.2	2.5	0.1	4695	0.02	0.8	959	115664
100% load																
Temp, F	HP	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 lb/hr	PM10/2.5 lb/mmbtu	PM10/2.5 lb/hr	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	6642	54.55	30.98	9	2.0	25	3.3	25	1.9	2.5	0.2	7145	0.02	1.2	871	161,184
59	6012	50.72	30.16	9	1.8	25	3.1	25	1.7	2.5	0.2	6603	0.02	1.1	956	144,840
100	4852	44.43	27.78	9	1.6	25	2.6	25	1.5	2.5	0.2	5679	0.02	1.0	1004	127484

Solar Turbines Emissions Estimates

Centaur 40-4700S

Assumptions: pipeline natural gas, sea level, 4"/4" inlet/outlet losses, nominal performance

50% load			•													
		fuel flow,	Thermal	NOx	NOx	CO	CO	UHC	UHC	VOC	VOC	CO2	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	HP	mmbtu/hr LHV	Eff, %	(ppm)	(lb/hr)	(ppm)	(lb/hr)	(ppm)	(lb/hr)	(ppm)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	2511	32.29	19.78	25	3.2	50	3.9	25	1.1	2.5	0.1	4259	0.02	0.7	726	140,550
59	2278	29.85	19.41	25	3.0	50	3.6	25	1.0	2.5	0.1	3911	0.02	0.7	818	122,244
100	1735	26.09	16.92	25	2.6	50	3.1	25	0.9	2.5	0.1	3355	0.02	0.6	876	106980
75% load																
Temp, F	НР	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 lb/hr	PM10/2.5 lb/mmbtu	PM10/2.5	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	3767	39.31	24.39	25	3.9	50	4.8	25	1.4	2.5	0.1	5177	0.02	0.9	736	156,668
59	3417	35.41	24.55	25	3.5	50	4.3	25	1.2	2.5	0.1	4635	0.02	0.8	810	136,464
100	2602	30.78	21.51	25	3.0	50	3.7	25	1.0	2.5	0.1	3955	0.02	0.7	873	117366
100% load																
Temp, F	НР	fuel flow, mmbtu/hr LHV	Thermal Eff, %	NOx (ppm)	NOx (lb/hr)	CO (ppm)	CO (lb/hr)	UHC (ppm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2	PM10/2.5	PM10/2.5	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	5023	46.39	30.23	25	4.7	50	5.7	25	1.6	2.5	0.2	6100	0.02	1.0	779	164,995
59	4556	42.27	29.51	25	4.7	50	5.1	25	1.5	2.5	0.2	5526	0.02	0.9	840	148,793
100	3470	35.07	27.45	25	3.4	50	4.2	25	1.2	2.5	0.2	4503	0.02	0.8	873	127331

SoLoNOx Products: Emissions in Non-SoLoNOx Modes

Leslie Witherspoon

Solar Turbines Incorporated

PURPOSE

Solar's gas turbine dry low NOx emissions combustion systems, known as $SoLoNOx^{TM}$, have been developed to provide the lowest emissions possible during normal operating conditions. In order to optimize the performance of the turbine, the combustion and fuel systems are designed to reduce NOx, CO and unburned hydrocarbons (UHC) without penalizing stability or transient capabilities. At very low load and cold temperature extremes, the SoLoNOx system must be controlled differently in order to assure stable operation. The required adjustments to the turbine controls at these conditions cause emissions to increase.

The purpose of this Product Information Letter is to provide emissions estimates, and in some cases warrantable emissions for NOx, CO and UHC, at off-design conditions.

Historically, regulatory agencies have not required a specific emissions level to be met at low load or cold ambient operating conditions, but have asked what emissions levels are expected. The expected values are necessary to appropriately estimate emissions for annual emissions inventory purposes and for New Source Review applicability determinations and permitting.

COLD AMBIENT EMISSIONS ESTIMATES

Solar's standard temperature range warranty for gas turbines with SoLoNOx combustion is $\geq 0^{\circ}F$ ($-20^{\circ}C$). The $Titan^{TM}$ 250 is an exception, with a lower standard warranty at $\geq -20^{\circ}F$ ($-29^{\circ}C$). At ambient temperatures below $0^{\circ}F$, many of Solar's turbine engine models are controlled to increase pilot fuel to improve flame stability and emissions are higher. Without the increase in pilot fuel at temperatures below $0^{\circ}F$ the engines may exhibit combustor rumble, as operation may be near the lean stability limit.

If a cold ambient emissions warranty is requested, a new production turbine configured with the latest combustion hardware is required. For most models this refers to the inclusion of Cold Ambient Fuel Control Logic.

Emissions warranties are not offered for ambient temperatures below –20°F (–29°C). In addition, cold ambient emissions warranties cannot be offered for the *Centaur*[®] 40 turbine.

Table 1 provides expected and warrantable (upon Solar's documented approval) emissions levels for Solar's SoLoNOx combustion turbines. All emissions levels are in ppm at 15% O_2 . Refer to Product Information Letter 205 for $Mercury^{TM}$ 50 turbine emissions estimates.

For information on the availability and approvals for cold ambient temperature emissions warranties, please contact Solar's sales representatives.

Table 2 summarizes "expected" emissions levels for ambient temperatures below $0^{\circ}F$ ($-20^{\circ}C$) for Solar's SoLoNOx turbines that <u>do not have current production hardware</u> or for new production hardware <u>that is not equipped with the cold ambient fuel control logic</u>. The emissions levels are extrapolated from San Diego factory tests and may vary at extreme temperatures and as a result of variations in other parameters, such as fuel composition, fuel quality, etc.

For more conservative NOx emissions estimate for new equipment, customers can refer to the New Source Performance Standard (NSPS) 40CFR60, subpart KKKK, where the allowable NOx emissions level for ambient temperatures < 0°F (–20°F) is 150 ppm NOx at 15% O_2 . For pre-February 18, 2005, SoLoNOx combustion turbines subject to 40CFR60 subpart GG, a conservative estimate is the appropriate subpart GG emissions level. Subpart GG levels range from 150 to 214 ppm NOx at 15% O_2 depending on the turbine model.

Table 3 summarizes emissions levels for ambient temperatures below –20°F (–29°C) for the *Titan* 250.

Table 1. Warrantable Emissions Between 0°F and –20°F (–20° to –29°C) for New Production

Turbine Model	Fuel System	Fuel	Applicable Load	NOx, ppm	CO,	UHC, ppm
Centaur 50	Gas Only	Gas	50 to 100% load	42	100	50
Cernaur 30	Dual Fuel	Gas	50 to 100% load	72	100	50
Taurus™ 60	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Taurus 65	Gas Only	Gas	50 to 100% load	42	100	50
Taurus 70	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Mars [®] 90	Gas Only	Gas	50 to 100% load	42	100	50
Mars 100	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Titan 130	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Titon 250	Gas Only	Gas	40 to 100% load	25	50	25
Titan 250	Gas Only	Gas	40 to 100% load	15	25	25
Centaur 50	Dual Fuel	Liquid	65 to 100% load	120	150	75
Taurus 60	Dual Fuel	Liquid	65 to 100% load	120	150	75
Taurus 70	Dual Fuel	Liquid	65 to 100% load	120	150	75
Mars 100	Dual Fuel	Liquid	65 to 100% load	120	150	75
Titan 130	Dual Fuel	Liquid	65 to 100% load	120	150	75

Applicable Turbine NOx. UHC. CO. **Fuel System** Fuel Model Load ppm ppm ppm Centaur 40 Gas Only or Dual Fuel Gas 80 to 100% load 120 150 50 Gas Only Gas 50 to 100% load 120 150 50 Centaur 50 **Dual Fuel** Gas 50 to 100% load 120 150 50 120 Taurus 60 Gas Only or Dual Fuel Gas 50 to 100% load 150 50 Taurus 65 Gas Only 50 to 100% load 120 150 Gas 50 Taurus 70 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Mars 90 Gas Only Gas 80 to 100% load 120 150 50 Mars 100 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Titan 130 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Centaur 40 **Dual Fuel** Liquid 80 to 100% load 120 150 75 Centaur 50 **Dual Fuel** Liquid 65 to 100% load 120 150 75 Taurus 60 **Dual Fuel** Liquid 65 to 100% load 120 150 75 Taurus 70 **Dual Fuel** Liquid 65 to 100% load 120 150 75 *Mars* 100 **Dual Fuel** 65 to 100% load Liquid 120 150 75 Titan 130 Dual Fuel Liquid 65 to 100% load 120 150 75

Table 2. Expected Emissions below 0°F (–20°C) for SoLoNOx Combustion Turbines

Table 3. Expected Emissions below –20°F (–29°C) for the Titan 250 SoLoNOx Combustion Turbine

Turbine Model	Fuel System	Fuel	Applicable Load	NOx, ppm	CO, ppm	UHC, ppm
Titan 250	Gas Only	Gas	40 to 100% load	70	150	50

COLD AMBIENT PERMITTING STRATEGY

There are several permitting options to consider when permitting in cold ambient climates. Customers can use a tiered permitting approach or choose to permit a single emission rate over all temperatures. Historically, most construction and operating permits were silent on the ambient temperature boundaries for *SoLoNOx* operation.

Some customers have used a tiered permitting strategy. For purposes of compliance and annual emissions inventories, a digital thermometer is installed to record ambient temperature. The amount of time is recorded that the ambient temperature falls below 0°F. The amount of time below 0°F is then used with the emissions estimates shown in Tables 1 and 2 to estimate "actual" emissions during sub-zero operation.

A conservative alternative to using the NOx values in Tables 1, 2 and 3 is to reference 40CFR60 subpart KKKK, which allows 150 ppm NOx at 15% O_2 for sub-zero operation.

For customers who wish to permit at a single emission rate over all ambient temperatures, inlet air heating can be used to raise the engine inlet air temperature (T_1) above $0^{\circ}F$. With inlet air heating to keep T_1 above $0^{\circ}F$, standard emission warranty levels may be offered.

Inlet air heating technology options include an electric resistance heater, an inlet air to exhaust heat exchanger and a glycol heat exchanger.

If an emissions warranty is desired and ambient temperatures are commonly below $-20^{\circ}F$ ($-29^{\circ}C$), inlet air heating can be used to raise the turbine inlet temperature (T_1) to at least $-20^{\circ}F$. In such cases, the values shown in Table 1 can be warranted for new production.

EMISSIONS ESTIMATES IN NON-SOLONOX MODE (LOW LOAD)

At operating loads < 50% (<40% load for the *Titan* 250) on natural gas fuel and < 65% (< 80% load for *Centaur* 40) on liquid fuels, *SoLoNOx* engines are controlled to increase stability and transient response capability. The control steps that are required affect emissions in two ways: 1) pilot fuel flow is increased, increasing NOx emissions, and 2) airflow through the combustor is increased, increasing CO emissions. Note that the load levels are approximate. Engine controls are triggered either by power output for single-shaft engines or gas producer speed for two-shaft engines.

A conservative method for estimating emissions of NOx at low loads is to use the applicable NSPS: 40CFR60 subpart GG or KKKK. For projects that commence construction after February 18, 2005, subpart KKKK is the applicable NSPS and contains a NOx level of 150 ppm @ 15% O₂ for operating loads less than 75%.

Table 4 provides estimates of NOx, CO, and UHC emissions when operating in non-SoLoNOx mode for natural gas or liquid fuel. The estimated emissions can be assumed to vary linearly as load is decreased from just below 50% load for natural gas (or 65% load for liquid fuel) to idle.

The estimates in Table 4 apply for any product for gas only or dual fuel systems using pipeline quality natural gas. Refer to Product Information Letter 205 for *Mercury* 50 emissions estimates.

Table 4. Estimated Emissions in non-SoLoNOx Mode

Ambient	Fuel System	Engine Load	NOx, ppm	CO, ppm	UHC, ppm
	Centaur 40/50, 7	Taurus 60/65/70, M	ars 90/100, <i>T</i>	itan 130	
≥ –20°F (–29°C)	Natural Gas	Less than 50%	70	8,000	800
2 –20 F (–29 C)	Natural Gas	Idle	50	10,000	1,000
< –20°F (–29°C)	Natural Gas	Less than 50%	120	8,000	800
(-29 C)	Natural Gas	Idle	120	10,000	1,000
		Titan 250			
> 20°F (20°C)	Natural Gas	Less than 40%	50	25	20
≥ –20°F (–29°C)	Natural Gas	Idle	50	2,000	200
20°E (20°C)	Natural Gas	Less than 40%	70	150	50
< –20°F (–29°C)	Natural Gas	Idle	70	2,000	200
	Centaur 50,	Taurus 60/70, Ma	rs 100, <i>Titan</i>	130	
≥ –20°F (–29°C)	Liquid	Less than 65%	120	1,000	100
2 –20 F (–29 C)	Liquid	Idle	120	10,000	3,000
< -20°F (-29°C)	Liquid	Less than 65%	120	1,000	150
(-29 C)	Liquiu	Idle	120	10,000	3,000
		Centaur 40			
> 20°E (20°C)	Liquid	Less than 80%	120	1,000	100
≥ –20°F (–29°C)	Liquid	Idle	120	10,000	3,000
20°E (20°C)	Liquid	Less than 80%	120	1,000	150
< -20°F (-29°C)	Liquid	Idle	120	10,000	3,000

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.

Solar, Titan, Mercury, Mars, Centaur and SoloNOx are trademarks of Solar Turbines Incorporated. Specifications subject to change without notice. Printed in U.S.A.

Volatile Organic Compound, Sulfur Dioxide, and Formaldehyde Emission Estimates

Leslie Witherspoon

Solar Turbines Incorporated

PURPOSE

This Product Information Letter summarizes methods that are available to estimate emissions of volatile organic compounds (VOC), sulfur dioxide (SO₂), and formaldehyde from gas turbines. Emissions estimates of these pollutants are often necessary during the air permitting process.

INTRODUCTION

In absence of site-specific or representative source test data, Solar refers customers to a United States Environmental Protection Agency (EPA) document titled "AP-42" or other appropriate EPA reference documents. AP-42 is a collection of emission factors for different emission sources. The emission factors found in AP-42 provide a generally accepted way of estimating emissions when more representative data are not available. The most recent version of AP-42 (dated April 2000) can be found at:

http://www.epa.gov/ttn/chief/ap42/ch03/index.html

Solar does not typically warranty the emission rates for VOC, SO₂ or formaldehyde.

Volatile Organic Compounds

Many permitting agencies require gas turbine users to estimate emissions of VOC, a subpart of the unburned hydrocarbon (UHC) emissions, during the air permitting process. Volatile organic compounds, non-methane hydrocarbons (NMHC), and reactive organic gases (ROG) are some of the many ways of referring to the non-methane (and non-ethane) portion of an "unburned hydrocarbon" emission estimate.

For natural gas fuel, Solar's customers use 10-20% of the UHC emission rate to represent VOC

emissions. The estimate of 10-20% is based on a ratio of total non-methane hydrocarbons to total organic compounds. The use of 10-20% provides a conservative estimate of VOC emissions. The balance of the UHC is assumed to be primarily methane.

For liquid fuel, it is appropriate to estimate that 100% of the UHC emission estimate is VOC.

Sulfur Dioxide

Sulfur dioxide emissions are produced by conversion of sulfur in the fuel to SO_2 . Since Solar does not control the amount of sulfur in the fuel, we are unable to predict SO_2 emissions without a site fuel composition analysis. Customers generally estimate SO_2 emissions with a mass balance calculation by assuming that any sulfur in the fuel will convert to SO_2 . For reference, the typical mass balance equation is shown below.

Variables: wt % of sulfur in fuel Btu/lb fuel (LHV*) MMBtu/hr fuel flow (LHV)

$$\frac{\text{lb SO}_2}{\text{hr}} = \left(\frac{\text{wt\% Sulfur}}{100}\right) \left(\frac{\text{lb fuel}}{\text{Btu}}\right) \left(\frac{10^6 \text{ Btu}}{\text{MMBtu}}\right) \left(\frac{\text{MMBtu fuel}}{\text{hr}}\right) \left(\frac{\text{MW SO}_2}{\text{MW Sulfur}}\right)$$

As an alternative to the mass balance calculation, EPA's AP-42 document can be used. AP-42 (Table 3.1-2a, April 2000) suggests emission factors of 0.0034 lb/MMBtu for gas fuel (HHV*) and 0.033 lb/MMBtu for liquid fuel (HHV).

*LHV = Lower Heating Value; HHV = Higher Heating Value

Formaldehyde

In gas turbines, formaldehyde emissions are a result of incomplete combustion. Formaldehyde

PIL 168, Rev 4 1 14 May 2012

in the exhaust stream is unstable and very difficult to measure. In addition to turbine characteristics including combustor design, size, maintenance history, and load profile, the formaldehyde emission level is also affected by:

- Ambient temperature
- Humidity
- Atmospheric pressure
- Fuel quality
- Formaldehyde concentration in the ambient air
- Test method measurement variability
- Operational factors

The emission factor data in Table 1 is an excerpt from an EPA memo: "Revised HAP Emission

Factors for Stationary Combustion Turbines, 8/22/03." The memo presents hazardous air pollutant (HAP) emission factor data in several categories including: mean, median, maximum, The emission factors in the and minimum. memo are a compilation of the HAP data EPA collected during the Maximum Achievable Control Technology (MACT) standard development process. The emission factor documentation shows there is a high degree of variability in formaldehyde emissions from gas turbines, depending on the manufacturer, rating size of equipment, combustor design, and testing events. To estimate formaldehyde emissions from gas turbines, users should use the emission factor(s) that best represent the gas turbines actual / planned operating profile. Refer to the memo for alternative emission factors.

Table 1. EPA's Total HAP and Formaldehyde Emission Factors for <50 MW Lean-Premix Gas Turbines burning Natural Gas

(Source: Revised HAP Emission Factors for Stationary Combustion Turbines, OAR-2002-0060, IV-B-09, 8/22/03)

Pollutant	Engine Load	95% Upper Confidence of Mean, lb/MMBtu HHV	95% Upper Confidence of Data, lb/MMBtu HHV	Memo Reference
Total HAP	> 90%	0.00144	0.00258	Table 19
Total HAP	All	0.00160	0.00305	Table 16
Formaldehyde	> 90%	0.00127	0.00241	Table 19
Formaldehyde	All	0.00143	0.00288	Table 16

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc. *Solar* is a trademark of Solar Turbines Incorporated. Specifications subject to change without notice. Printed in U.S.A. © 2008 Solar Turbines Incorporated. All rights reserved.

PIL 168, Rev 4 2 14 May 2012 Caterpillar: Confidential Green

Emission Estimates at Start-up, Shutdown, and Commissioning for SoLoNOx Combustion Products

Leslie Witherspoon

Solar Turbines Incorporated

PURPOSE

The purpose of this Product Information Letter (PIL) is to provide emission estimates for start-up and shutdown events for $Solar^{\mathbb{P}}$ gas turbines with $SoLoNOx^{TM}$ dry low emissions combustion systems. The commissioning process is also discussed.

INTRODUCTION

The information presented in this document is representative for both generator set (GS) and compressor set/mechanical drive (CS/MD) combustion turbine applications. Operation of duct burners and/or any add-on control equipment is not accounted for in the emissions estimates. Emissions related to the start-up, shutdown, and commissioning of combustion turbines will not be guaranteed or warranted.

Combustion turbine start-up occurs in one of three modes: cold, warm, or hot. On large, utility size, combustion turbines, the start-up time varies by the "mode". The start-up duration for a hot, warm, or cold *Solar* turbine is less than 10 minutes in simple-cycle and most combined heat and power applications.

Heat recovery steam generator (HRSG) steam pressure is usually 250 psig or less. At 250 psig or less, thermal stress within the HRSG is minimized and, therefore, firing rampup is not limited. However, some combined heat and power plant applications will desire or dictate longer start-up times, therefore emissions assuming a 60-minute start are also estimated.

A typical shutdown for a *Solar* turbine is <10 minutes. Emissions estimates for an elongated shutdown, 30-minutes, are also included.

Start-up and shutdown emissions estimates for the *Mercury*™ 50 engine are found in PIL 205.

For start-up and shutdown emissions estimates for conventional combustion turbines, landfill gas, digester gas, or other alternative fuel applications, contact Solar's Environmental Programs Department.

START-UP SEQUENCE

The start-up sequence, or getting to *SoLoNOx* combustion mode, takes three steps:

- 1. Purge-crank
- 2. Ignition and acceleration to idle
- 3. Loading / thermal stabilization

During the "purge-crank" step, rotation of the turbine shaft is accomplished with a starter motor to remove any residual fuel gas in the engine flow path and exhaust. During "igni-

tion and acceleration to idle," fuel is introduced into the combustor and ignited in a diffusion flame mode and the engine rotor is accelerated to idle speed.

The third step consists of applying up to 50% load while allowing the combustion flame to transition and stabilize. Once 50% load is achieved, the turbine transitions to *SoLoNOx* combustion mode and the engine control system begins to hold the combustion primary zone temperature and limit pilot fuel to achieve the targeted nitrogen oxides (NOx), carbon monoxide (CO), and unburned hydrocarbons (UHC) emission levels.

Steps 2 and 3 are short-term transient conditions making up less than 10 minutes.

SHUTDOWN PROCESS

Normal, planned cool down/shutdown duration varies by engine model. The *Centaur*[®] 40, *Centaur* 50, $Taurus^{TM}$ 60, and Taurus 65 engines take about 5 minutes. The *Taurus* 70, $Mars^{®}$ 90 and 100, $Titan^{TM}$ 130 and Titan 250 engines take about 10 minutes. Typically, once the shutdown process starts, the emissions will remain in SoLoNOx mode for approximately 90 seconds and move into a transitional mode for the balance of the estimated shutdown time (assuming the unit was operating at full-load).

START-UP AND SHUTDOWN EMISSIONS ESTIMATES

Tables 1 through 5 summarize the estimated pounds of emissions per start-up and shut-down event for each product. Emissions estimates are presented for both GS and CS/MD applications on both natural gas and liquid fuel (diesel #2). The emissions estimates are calculated using empirical exhaust characteristics.

COMMISSIONING EMISSIONS

Commissioning generally takes place over a two-week period. Static testing, where no combustion occurs, usually requires one week and no emissions are expected. Dynamic testing, where combustion will occur, will see the engine start and shutdown a number of times and a variety of loads will be placed on the system. It is impossible to predict how long the turbine will run and in what combustion / emissions mode it will be running. The dynamic testing period is generally followed by one to two days of "tune-up" during which the turbine is running at various loads, most likely within low emissions mode (warranted emissions range).

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.

Solar, Titan, Mars, Taurus, Mercury, Centaur, Saturn, SoLoNOx, and Turbotronic are trademarks of Solar Turbines Incorporated. All other trademarks are the intellectual property of their respective companies. Specifications are subject to change without notice.

_

¹ 40% load for the *Titan* 250 engine on natural gas. 65% load for all engines on liquid fuel (except 80% load for the *Centaur* 40).

Table 1. Estimation of Start-up and Shutdown Emissions (lbs/event) for SoLoNOx Generator Set Applications 10 Minute Start-up and 10 Minute Shutdown

Natural Gas Fuel

Data will NOT be warranted under any circumstances

		Cent	aur 40 47	701S		Cent	aur 50 62	201S		Tau	rus 60 79	01S		Tau	rus 65 84	01S	
	NOX CO UHC CO					NOx	со	UHC	CO2	NOx	со	UHC	CO2	NOx	со	UHC	CO2
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per S	Start (lbs)	0.6	58.1	3.3	359	0.8	75.0	4.3	454	0.8	78.5	4.5	482	0.9	85.8	4.9	523
Total Emissions per Shutdo	own (lbs)	0.3	25.5	1.5	160	0.4	31.1	1.8	194	0.4	34.7	2.0	217	0.4	38.2	2.2	237

	Taur	us 70 108	01S		Mars 9	0 130029	GSC		Mars 1	00 16002:	s GSC		Titar	130 205)1S		Titaı	n 250 300	02S	
	NOx	со	UHC	CO2	NOx	со	UHC	CO2	NOx	со	UHC	CO2	NOx	со	UHC	CO2	NOx	со	UHC	CO2
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	1.1	103.9	5.9	634	1.4	129.0	7.4	868	1.6	151.2	8.6	952	2.1	195.6	11.2	1,194	2.5	22.7	1.5	1,925
Total Emissions per Shutdown (lbs)	1.3	110.7	6.3	689	1.7	147.9	8.4	912	1.9	166.8	9.5	1,026	2.4	210.0	12.0	1,303	3.0	19.9	1.5	1,993

Assumes ISO conditions: 59F, 60% RH, sea level, no losses

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Table 2. Estimation of Start-up and Shutdown Emissions (lbs/event) for SoLoNOx Generator Set Applications 60 Minute Start-up and 30 Minute Shutdown

Natural Gas Fuel

Data will NOT be warranted under any circumstances

	Cent	aur 40 47	701S		Cent	aur 50 62	201S		Tauı	rus 60 79	01S		Tau	rus 65 84	01S	
	NOx	со	UHC	CO2	NOx	co	UHC	CO2	NOx	CO	UHC	CO2	NOx	СО	UHC	CO2
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (Ibs)	4.1	219.4	13.0	3,420	5.0	272.4	16.1	4,219	5.7	299.8	17.8	4,780	6.1	326.5	19.3	5,074
Total Emissions per Shutdown (lbs)	1.8	121.1	7.1	1,442	2.3	163.3	9.5	1,834	2.5	163.5	9.6	1,994	2.6	177.2	10.4	2,119

	Taur	us 70 108	01S		Mar	s 90 1300)2S		Mars	100 160	02S		Titar	130 205	01S		Titar	n 250 300	02S	
	NOx	со	UHC	CO2	NOx	со	UHC	CO2	NOx	СО	UHC	CO2	NOx	СО	UHC	CO2	NOx	СО	UHC	CO2
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (Ibs)	7.6	410.3	24.2	6,164	10.5	570.8	33.7	8,641	11.3	583.5	34.6	9,691	13.8	740.4	43.8	11,495	14.6	75.5	7.3	16,253
Total Emissions per Shutdown (Ibs)	3.3	223.0	13.0	2,588	4.3	277.0	16.2	3,685	4.8	308.1	18.0	4,056	6.0	405.3	23.7	4,826	6.2	52.6	4.1	7,222

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Table 3. Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx CS/MD Applications
10 Minute Start-up and 10 Minute Shutdown
Natural Gas Fuel

Data will NOT be warranted under any circumstances

[Cen	taur 40 47	02S		Cen	taur 50 61	02S		Tau	ırus 60 780)2S	
	NOx	со	UHC	CO2	NOx	со	UHC	CO2	NOx	СО	UHC	CO2
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (Ibs)	0.7	64.4	3.7	392	0.8	69.1	4.0	469	0.7	64.3	3.7	410
Total Emissions per Shutdown (Ibs)	0.3	30.2	1.7	181	0.4	35.4	2.0	217	0.4	33.0	1.9	204

	Tau	rus 70 103	02S		Mars 9	0 13002S	CSMD		Mars 1	00 16002S	CSMD		Tita	n 130 205	02S		Tita	n 250 300	02S	
	NOx	СО	UHC	CO2	NOx	СО	UHC	CO2	NOx	со	UHC	CO2	NOx	СО	UHC	CO2	NOx	CO	UHC	CO2
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	0.8	73.1	4.2	519	1.2	109.3	6.2	805	1.4	123.5	7.1	829	1.9	176.9	10.1	1,161	2.6	26.2	1.7	1,794
Total Emissions per Shutdown (Ibs)	1.1	93.4	5.3	575	1.5	132.6	7.6	817	1.7	149.2	8.5	920	2.4	207.6	11.9	1,272	2.9	19.1	1.4	1,918

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Table 4. Estimation of Start-up and Shutdown Emissions (lbs/event) for SoLoNOx Generator Set 10 Minute Start-up and 10 Minute Shutdown Liquid Fuel (Diesel #2)

Data will NOT be warranted under any circumstances

	Cent	aur 40 47	701S		Cent	aur 50 62	.01S		Tau	rus 60 79	01S	
	NOx	co	UHC	C02	NOx	co	UHC	C02	NOx	co	UHC	C02
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	1.3	44.5	7.4	473	1.7	59.0	9.8	601	1.7	59.8	9.9	636
Total Emissions per Shutdown (lbs)	0.6	17.3	2.8	211	0.7	21.2	3.4	256	0.8	23.5	3.8	286

	Taur	us 70 108	301S		Mars 10	00 16002:	s gsc		Titaı	n 130 205	01S	
	NOx	CO	UHC	C02	NOx	co	UHC	C02	NOx	co	UHC	C02
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	2.3	78.5	13.0	823	3.4	114.1	18.8	1,239	4.3	147.5	24.4	1,547
Total Emissions per Shutdown (lbs)	2.5	73.6	12.0	889	3.8	111.4	18.1	1,331	4.7	139.1	22.6	1,677

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes #2 Diesel fuel; ES 9-98 compliant.

Table 5. Estimation of Start-up and Shutdown Emissions (lbs/event) for SoLoNOx Generator Set 60 Minute Start-up and 30 Minute Shutdown
Liquid Fuel (Diesel #2)

Data will NOT be warranted under any circumstances

	Cent	aur 40 47	701S		Centa	aur 50 62	201S		Tau	rus 60 79	01S	
	NOx	co	UHC	C02	NOx	co	UHC	C02	NOx	co	UHC	C02
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	11.7	194.7	30.9	4,255	15.2	271.9	43.3	5,302	14.7	282.6	45.0	5,962
Total Emissions per Shutdown (lbs)	4.4	84.7	13.6	1,816	6.7	164.3	27.0	2,334	6.3	159.0	26.0	2,515

	Taur	us 70 108	01S		Mars	s 100 160	02S		Titaı	n 130 205	01S	
	NOx	co	UHC	C02	NOx	co	UHC	C02	NOx	co	UHC	C02
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	18.4	360.3	57.4	7,375	29.1	552.0	87.7	11,685	34.4	677.0	108.0	13,731
Total Emissions per Shutdown (lbs)	8.0	207.8	34.1	3,156	12.3	302.6	49.4	4,970	15.0	388.5	63.7	5,876

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes #2 Diesel fuel; ES 9-98 compliant.

SCR SYSTEM DESIGN DATASHEET

ENQUIRY DETAILS	
Enquiry Number	32237
Revision	0
Date of Revision	01-Sep-2015
Project Name	Atlantic Coast Pipeline
Project Location	ACP-3
Application	Simple Cycle
Number of SCRs	17

PROCESS DATA													
Design Case		Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12
Customer Design Case		Centaur 40	Centaur 40	Centaur 50L	Centaur 50L	Taurus 60	Taurus 60	Taurus 70	Taurus 70	Mars 100	Mars 100	Titan 130	Titan 130
Percent Load Fuel Case	Percent Percent	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG	100% NG
EXHAUST GAS EMISSIONS DATA (BEFORE CO		ING	NG	IVG	IVO	IVG	IVG	ING	ING	ING	NG	IVG	IVG
Exhaust Gas Mass Flowrate, Wet	lb/h	164994	127403	161184	127484	186880	151704	247255	179824	367228	289445	437956	341226
Exhaust Gas Volumetric Flowrate, Wet	ACFM	87269	73508	91761	80971	107807	96052	139492	112383	207193	177388	254955	215260
Exhaust Gas Temperature	degrees F	779.0	873.0	871.0	1004.0	888.0	999.0	858.0	980.0	859.0	953.0	900.0	993.0
Exhaust Gas Composition													
Component MW													
02 31.999	vol% (wet)	15.78	15.29	14.80	14.08	14.50	13.93	14.39	13.88	14.73	14.23	14.40	13.69
H2O 18.015 N2 28.013	vol% (wet) vol% (wet)	76.23	8.15 73.41	5.55 75.88	9.21 73.01	5.81 75.78	9.34 72.96	5.91 75.74	9.39 72.93	5.61 75.85	9.08 73.06	5.90 75.75	9.55 72.88
CO2 44.010	vol% (wet)	2.41	2.27	2.86	2.83	3.00	2.90	3.05	2.93	2.90	2.76	3.04	3.01
Ar 39.948	vol% (wet)	0.91	0.88	0.91	0.87	0.91	0.87	0.91	0.87	0.91	0.87	0.91	0.87
Emissions from the Source @ %O2	15	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Reference applicable for ppmvd and mg													
Nox as NO2	ppmvd	25.00	25.00	9.00	9.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
Nox as NO2	lb/h	4.66 50.00	3.44 50.00	1.95 25.00	1.55 25.00	3.97	3.16	5.34 25.00	3.77 25.00	7.51	5.73	9.44	7.38
CO CO	ppmvd lb/h	50.00	4.19	25.00 3.31	25.00	25.00 4.02	25.00 3.20	25.00 5.42	3.83	25.00 7.62	25.00 5.81	25.00 9.58	25.00 7.49
SO2	ppmvd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S02	lb/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO3	ppmvd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO3	lb/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COOLING AIR DATA													
Cooling Air Mass Flowrate, Wet	lb/h	7181.2	27800.1	29270.9	57444.9	38705.3	67013.0	40077.2	73373.3	60074.6	104237.6	98593.9	147099.4
Cooling Air Volumetric Flowrate, Wet	ACFM	1387	6438	5653	13303	7475	15518	7739	16991	11601	24139	19040	34064
Ambient Air Temperature	degrees F	0.00	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00	100.00
Relative Humidity	Percent	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
EVITATION CAS EMISSIONS DATA (AFTER COOL	I INC)												
EXHAUST GAS EMISSIONS DATA (AFTER COOL Exhaust Gas Mass Flowrate, Wet	lb/h	172175	155203	190455	184929	225585	218717	287332	253197	427303	393683	536550	488325
Exhaust Gas Volumetric Flowrate, Wet	ACFM	88898	80938	98384	96292	116559	113920	148553	131945	220785	205195	277243	254464
Exhaust Gas Temperature (after cooling)	degrees F	750.00	750.00	750.00	750.00	750.00	750.00	750.00	750.00	750.00	750.00	750.00	750.00
, , , , , ,													
Exhaust Gas Composition													
Component MW													
02 31.999	vol% (wet)	15.99	16.15	15.73	15.95	15.59	15.82	15.29	15.68	15.59	15.78	15.59	15.62
H2O 18.015	vol% (wet)	4.48	7.38	4.72	7.55 73.65	4.84	7.67	5.11	7.79 73.55	4.84	7.70	4.84	7.84
N2 28.013 CO2 44.010	vol% (wet) vol% (wet)	76.30 2.31	73.71 1.87	76.21 2.43	1.97	76.16 2.50	73.61 2.03	76.05 2.63	2.10	76.15 2.50	73.59 2.04	76.16 2.49	73.54 2.12
Ar 39.948	vol% (wet)	0.91	0.88	0.91	0.88	0.91	0.88	0.91	0.88	0.91	0.88	0.91	0.88
37.740	voiso (wet)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Emissions from the Source @ %O2	15												
Reference applicable for ppmvd and mg	I/Nm3 (dry)												
Nox as NO2	ppmvd	25.00	25.06	9.00	9.04	15.00	15.07	15.00	15.06	15.00	15.06	15.00	15.06
Nox as NO2	lb/h	4.66	3.44	1.95	1.55	3.97	3.16	5.34	3.77	7.51	5.73	9.44	7.38
CO	ppmvd	50.00	50.13	25.00	25.11	25.00	25.11	25.00	25.10	25.00	25.09	25.00	25.11
CO SO2	lb/h	5.67 0.00	4.19 0.00	3.31 0.00	2.63 0.00	4.02 0.00	3.20 0.00	5.42 0.00	3.83 0.00	7.62 0.00	5.81 0.00	9.58 0.00	7.49 0.00
S02	ppmvd lb/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S03	ppmvd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S03	lb/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particulates	kg/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Trace Elements	mg/Nm3 (dry)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
voc	ppmvd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Amount of Nox as NO2	Percent	50	50	50	50	50	50	50	50	50	50	50	50
74110411 01 1107 43 1102	room	- 55	00				00				00		00
Nox Reduction	Percent	80.00	80.00	44.44	44.44	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67
Dilution Air Required	lb/h	327	327	327	327	327	327	327	327	327	327	655	327
Dilution Air Required Aqueous Ammonia Requirement	SCFM	68	68	68	68	68	68 8	68 14	68	68 20	68 15	135 25	68
Aqueous Ammonia Requirement Aqueous Ammonia Requirement	lb/h gal/month	1046	8 772	569	452	989	787	1331	10 941	1873	15 1429	25 2354	19 1841
Total Mass injected by SCR	lb/h	338	335	333	332	337	335	341	337	347	342	680	346
	16/11	550	555	- 555	532	557	555	541	337	547	512	550	5 10
Exhaust Gas Mass Flowrate, Wet at SCR catalyst	lb/h	172513.1	155538.2	190787.8	185260.6	225922.6	219052.2	287673.0	253534.1	427649.1	394024.5	537229.4	488671.5
Exhaust Gas Vol Flowrate, Wet at SCR Catalyst	ACFM	89073	81113	98556	96465	116734	114095	148729	132120	220965	205373	277594	254645
Performance Warranties @ %O2	15												
Reference applicable for ppmvd and mg Nox as NO2		5.0	5.0	5.0	5.0	E 0	5.0	5.0	5.0	E 0	E 0	En	E 0
Nox as NO2 Nox as NO2	ppmvd lb/h	0.93	0.69	1.09	0.86	5.0 1.32	1.05	1.78	1.26	5.0 2.50	5.0 1.91	5.0 3.15	5.0 2.46
NH3 Slip	ppmvd	10.00	10.03	10.00	10.04	10.00	10.04	10.00	10.04	10.00	10.04	10.00	10.04
NH3 Slip	lb/h	0.69	0.51	0.80	0.64	0.98	0.78	1.32	0.93	1.85	1.41	2.33	1.82
* VTA = Vendor to Advise													

SITE/AMBIENT CONDITION:	S	
Design Ambient Temperature	100	degrees F
Design Ambient Pressure	407	inH2O
Site Elevation	VARIOUS	ft
Gauge Duct Pressure	20.00	inH2O
Relative Humidity	60	Percent

AFCU DESIGN		
Reagent	Aqueous	Ammonia
Reagent Concentration	19.00	%w/w

GAS ENGINE TECHNICAL DATA

ENGINE SPEED (rpm):	1800 RATING ST					STANDARD
COMPRESSION RATIO:	11 APPLICATION					GENSET
AFTERCOOLER TYPE:	SCAC RATING LET	VEL:				CONTINUOUS
AFTERCOOLER - STAGE 2 INLET (*F):	130 FUEL:	made.			0.17	NAT GAS
AFTERCOOLER - STAGE 1 INLET (*F):	192 FUEL SYST	EM				LOW PRESSURE
JACKET WATER OUTLET (*F):	198	CUDE DANCE/			WITH AIR FUEL	RATIO CONTROL
ASPIRATION: COOLING SYSTEM:		SURE RANGE(psi IANE NUMBER:	93			1. 5- 5.0 80
CONTROL SYSTEM:	ADEM3 FUEL LHV (905
EXHAUST MANIFOLD:		CAPABILITY AT 77	E INILET AID TE	MD /AV		2238
COMBUSTION:	LOW EMISSION POWER FA		FINEE AR IE	MIL' (IT)		0.8
NOX EMISSION LEVEL (g/bhp-hr NOx)	0.5 VOLTAGE(\					380-4160
	V.5 VOETAGE(1	25				300 4100
RATIN	G	NOTES	LOAD	100%	75%	50%
GENSET POWER	(WITHOUT FAN)	(1)(2)	ekW	1300	975	650
GENSET POWER	(WITHOUT FAN)	(1)(2)	kVA	1625	1218	B12
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1818	1364	910
GENERATOR EFFICIENCY	, i	(1)	%	95.9	95.8	95.8
GENSET EFFICIENCY(@ 1.0 Power Factor)	(ISO 3046/1)	(3)	%	34.7	33.2	31.1
THERMAL EFFICIENCY	(100 00-01)		⁷ / ₈	50.8	52.3	54.5
I .		(4) (5)	/ ⁷⁶ %	85.5	85.5	85.6
TOTAL EFFICIENCY (@ 1.0 Power Factor)		(5)	70	03.5	65.5	83.6
ENGINE D	ATA					
GENSET FUEL CONSUMPTION	(ISO 3046/1)	(6)	Btu/ekW-hr	9965	10415	11036
GENSET FUEL CONSUMPTION	(NOMINAL)	(6)	Blu/ekW-hr	10158	10618	11250
ENGINE FUEL CONSUMPTION	(NOMINAL)	(6)	Btu/bhp-hr	7261	7589	8037
AIR FLOW (77°F, 14.7 psia)	(WET)	(7)	ft3/min	4121	3172	2188
	(WET)					9702
AIR FLOW	(AAE1)	(7)	lb/hr	18272	14067	
FUEL FLOW (60°F, 14.7 psia)			scim	243	191	135
COMPRESSOR OUT PRESSURE			in Hg(abs)	87.4	82.5	60.2
COMPRESSOR OUT TEMPERATURE			*F	345	326	234
AFTERCOOLER AIR OUT TEMPERATURE			*F	129	130	130
INLET MAN. PRESSURE		(8)	in Hg(abs)	79.9	62.9	43.B
INLET MAN. TEMPERATURE	(MEASURED IN PLENUM)	(9)	00 %	139	140	140
TIMING		(10)	"BTDC	22	22	22
EXHAUST TEMPERATURE - ENGINE OUTLET		(11)	°F	974	985	1009
EXHAUST GAS FLOW (@engine outlet temp, 14.5	5 psia) (WET)	(12)	ft3/min	11850	9202	6461
EXHAUST GAS MASS FLOW	(WET)	(12)	lb/hr	18939	14590	10072
MAX INLET RESTRICTION	(****)	(13)	in H2O	10.04	7.99	3.98
MAX EXHAUST RESTRICTION		(13)	in H2O	20.07	12.41	5.51
EMISSIONS DATA -	ENGINE OUT					
NOx (as NO2)	2110.112 007	(14)(15)	g/bhp-hr	0.50	0.50	0.50
CO		(14)(16)	g/bhp-hr	2,49	2.58	2.82
THC (mol. wt. of 15.84)		(14)(16)	g/bhp-hr	5,45	5.82	6.78
NMHC (mol. wt. of 15.84)		(14)(16)	g/bhp-hr	0.82	0.87	1.02
'				0.54	0.58	83.0
NMNEHC (VOCs) (mol. wt. of 15.84)		(14)(16)(17)	g/bhp-hr			
HCHO (Formaldehyde)		(14)(16)	g/bhp-hr	0.34	0.37	0.42
CO2		(14)(16)	g/bhp-hr	504	527	559
EXHAUST OXYGEN		(14)(18)	% DRY	9.3	9.1	9.0
LAMBDA		(14)(18)		1.73	1.70	1.66
ENERGY BALA	MCE DATA	1				
LHV INPUT	NOE DATA	(19)	Btu/min	220051	172501	121849
HEAT REJECTION TO JACKET WATER (JW)		(20)(28)	Stu/min	28688	25137	21558
				7365	6138	4912
HEAT REJECTION TO ATMOSPHERE		(21)	Btu/min			
HEAT REJECTION TO LUBE OIL (OC)		(22)(28)	Btw/min	7401	6761	5967
HEAT REJECTION TO EXHAUST (LHV TO 77°F)		(23)(24)	8tw/min	81165	63518	45440
HEAT REJECTION TO EXHAUST (LHV TO 248°F)	(23)	Btu/min	61754	48372	34572
HEAT REJECTION TO A/C - STAGE 1 (1AC)		(25)(28)	Stu/min	9380	6325	1345
HEAT REJECTION TO A/C - STAGE 2 (2AC)		(26)(29)	Btu/min	7961	5809	3073
PUMP POWER		(27)	Btu/min	977	977	977
			_	_	_	

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

FUEL USAG	E GUIDI	E										
										7.5		100
CAT METHANE NUMBER	30	35	40	45	50	55	60	65	70	75	80	100
SET POINT TIMING	•	•	•	•	•	•	22	21	20	21	22	22
DERATION FACTOR		0	0	0	0	0	0.84	0.92	1	1	1	1

	130	0.99	0.95	0.92	0.88	0.85	0.82	0.79	0.76	0.73	0.70	0.67	0.64	0.62
	120	1	0.97	0.93	0.90	0.87	0.83	0.80	0.77	0.74	0.71	0.68	0.65	0.63
NLET	110	1	0.99	0.95	0.92	0.88	0.85	0.81	0.78	0.75	0,72	0.69	0.67	0.64
AIR	100	1	1	0.97	0.93	0.90	0.86	0.83	0.80	0,77	0.74	0.71	0.68	0.65
EMP	90	1	1	0.99	0,95	0.91	0.88	0.84	0.81	0.78	0.75	0.72	0.69	0.66
T.	80	1	1	1	0,97	0.93	0.89	0.86	0.83	0.79	0.76	0,73	0.70	0.67
	70	1	1	1	0.98	0.95	0.91	0.88	0.84	0.81	0.78	0.75	0.72	0.69
	60	1	1	1	1	0.97	0.93	0.89	0.86	0.82	0.79	0.76	0.73	0.70
	50	1	1	1	1	0.98	0.95	0.91	0.87	0.84	0.81	0.78	0.74	0.71
	•	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000

	130	1.34	1.39	1.45	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1,46
	120	1.27	1.32	1,38	1,39	1.39	1,39	1.39	1.39	1,39	1,39	1.39	1.39	1.39
NLET	110 [1.20	1.25	1,31	1,32	1.32	1.32	1.32	1.32	1.32	1:32	1.32	1.32	1.32
AIR IEMP	100 [1.13	1.18	1.24	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
°F	90 [1.06	1.11	1.17	1.18	1.18	1,18	1.18	1.18	1.18	1.18	1.18	1.18	1.18
•	80	1	1.05	1.09	1,11	1,11	1,11	1,11	1,11	1,11	1,11	1,11	1,11	1.11
	70 [1	1	1.02	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1,04	1.04	1.04
	60	1	1	1	1	1	1	1	1	1	1	1	1	1
	50	1	1	1	1	1	1	1	1	1	1	1	1	1
	30 [0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	

FUEL USAGE GUIDE:

This table shows the derate factor and full load set point timing required for a given fuel. Note that deration and set point timing adjustment may be required as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar methane number calculation.

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and attitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site. The derate factors shown do not take into account external cooling system capacity. The derate factors provided assume the external cooling system can maintain the specified cooling water temperatures at site conditions.

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factors and RPC (reference the Caterpillar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2).

- 1) Fuel Usage Guide Deration
- 2) 1-((1-Altitude/Temperature Deration) + (1-RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):

To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See notes 28 and 29 for application of this factor in calculating the heat exchanger sizing criteria. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail.

INLET AND EXHAUST RESTRICTIONS FOR ALTITUDE CAPABILITY:
The altitude derate chart is based on the maximum inlet and exhaust restrictions provided on page 1. Contact factory for restrictions over the specified values. Heavy Derates for higher restrictions will apply.

NOTES:

- 1. Generator efficiencies, power factor, and voltage are based on standard generator. [Genset Power (ekW) is calculated as: Engine Power (bkW) x Generator Efficiency], [Genset Power (kVA) is calculated as: Engine Power (bkW) x Generator Efficiency / Power Factor]
 2. Rating is with two engine driven water pumps. Tolerance is (+)3, (-)0% of full load.
- 3. Genset Efficiency published in accordance with ISO 3046/1, based on a 1.0 power factor.
- 4. Thermal Efficiency is calculated based on energy recovery from the jacket water, lube oil, 1st stage aftercooler, and exhaust to 248°F with engine operation at ISO 3046/1 Genset Efficiency, and assumes unburned fuel is converted in an oxidation catalyst.
- 5. Total efficiency is calculated as: Genset Efficiency + Thermal Efficiency. Tolerance is ±10% of full load data.
 6. ISO 3046/1 Genset fuel consumption tolerance is (+)5, (-)0% at the specified power factor. Nominal genset and engine fuel consumption tolerance is ± 3.0% of full load data at the specified power factor.
- 7. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 8. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 9. Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.
- Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.
 Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 12. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.
- 13. Inlet and Exhaust Restrictions are maximum allowed values at the corresponding loads. Increasing restrictions beyond what is specified will result in a significant engine derate
- 14. Emissions data is at engine exhaust flange prior to any after treatment.
- 15. NOx tolerances are ± 18% of specified value.
- 16. CO, CO2, THC, NMHC, NMNEHC, and HCHO values are "Not to Exceed" levels. THC, NMHC, and NMNEHC do not include aldehydes.

 17. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

 18. Exhaust Oxygen tolerance is ± 0.5; Lambda tolerance is ± 0.05. Lambda and Exhaust Oxygen level are the result of adjusting the engine to operate at the specified NOx level.

- 19. LHV rate tolerance is ± 3.0%.
- 20. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data
- 21. Heat rejection to atmosphere based on treated water. Tolerance is ± 50% of full load data.
- 22. Lube oil heat rate based on treated water. Tolerance is \pm 20% of full load data.
- 23. Exhaust heat rate based on treated water. Tolerance is ± 10% of full load data.
- 24. Heat rejection to exhaust (LHV to 77°F) value shown includes unburned fuel and is not intended to be used for sizing or recovery calculations.
- 25. Heat rejection to A/C Stage 1 based on treated water. Tolerance is ±5% of full load data.
- 26. Heat rejection to A/C Stage 2 based on treated water. Tolerance is ±5% of full load data.
- 27. Pump power includes engine driven jacket water and aftercooler water pumps. Engine brake power includes effects of pump power.

 28. Total Jacket Water Circuit heat rejection is calculated as: (JW x 1.1) + (OC x 1.2) + (1AC x 1.05) + (0.764 x (1AC + 2AC) x (ACHRF 1) x 1.05). Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

 29. Total Second Stage Aftercooler Circuit heat rejection is calculated as: (2AC x 1.05) + [(1AC + 2AC) x 0.236 x (ACHRF 1) x 1.05]. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

G3516B

GAS ENGINE TECHNICAL DATA

CATERPILLAR'

ENGINE POWER (bhp):

1818

COOLING SYSTEM:

JW+OC+1AC, 2AC

ENGINE SPEED (rpm): EXHAUST MANIFOLD:

1800 DRY

JACKET WATER OUTLET (°F):

198

Free Field Mechanical and Exhaust Noise

REX EMP	SOUND PRESSU	IRE LE	VEL (dB)							
	Octave Band Center Frequ										
100%	6 Load Data		dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Mechanical	Distance from	3.3	109.3	64.7	81.4	87.8	94.9	98.1	95.4	93.9	105.2
Sound	the Engine (ft)	23.0	92.4	47.8	64.5	70.9	78	81.2	78.5	77	88.3
		49.2	85.8	41.2	57.9	64.3	71.4	74.6	71.9	70.4	81.7
Exhaust Sound	Distance from	4.9	112.1	70.5	105.3	90.6	92.1	91.7	98.5	100.2	99
	the Engine (ft)	23.0	98.7	57.1	91.9	77.2	78.7	78.3	85.1	86.8	85.6
		49.2	92.1	50.5	85.3	70.6	72.1	81.7	78.5	80.2	79

SOUND PARAMETER DEFINITION:
Data Variability Statement:
Sound data presented by Caterpillar has been measured in accordance with ISO 6798 in a Grade 3 test environment. Measurements made in accordance with ISO 6798 will result in some amount of uncertainty. The uncertainties depend not only on the accuracies with which sound pressurelevels and measurement surface areas are determined, but also on the 'near-field error' which increases for smaller measurement distances and lower frequencies. The uncertainty for a Grade 3 test environment, that has a source that produces sounds that are uniformly distributed in frequency over the frequency range of interest, is equal to 4 dB (A-weighted). This uncertainty is expressed as the largest value of the standard deviation.

Load Acceptance

Transient Load	d Acceptance				
Load Step	Frequency Deviation +/- (%)	Voltage Deviation +/- (%)	Recovery Time (sec)	Classification as Defined by ISO 8528 - 5	Notes
25	+16/-16	+12/-12	20		
20	+9/-9	+9/-9	9	G1	2
15	+7/-7	+6/-6	7	G1	2
10	+5/-5	+3/-3	5	G1	2
5	+3/-3	+1/-1	5	G1	2
• 5	+3/-3	+1/-1	5		
-10	+5/-5	+3/-3	5		
-15	+7/-7	+6/-6	7		
-20	+9/-9	+9/-9	9		
-25	+16/-16	+12/-12	20		
Breaker Open	+25/-25	+35/-35	40		1
Recovery Specification	+1.75/-1.75	+5/-5			
Steady State Specification	+1.25/-1.25	+5/-5			

Transient Information

The transient load steps listed above are stated as a percentage of the engine's full rated load as indicated in the appropriate performance technical data sheet. Site ambient conditions, fuel quality, inlet/exhaust restriction and emissions settings will all affect engine response to load change. Engines that are not operating at the standard conditions stated in the Technical data sheet should be set up according to the guidelines included in the technical data; applying timing changes and/or engine derates as needed. Adherence to the engine settings guidelines will allow the engines to retain the transient performance stated in the tables above as a percentage of the site derated power (where appropriate). Fuel supply pressure and stability is critical to transient performance. Proper installation requires that all fuel train components (including filters, shut off valves, and regulators) be sized to ensure adequate fuel be delivered to the engine. The following are fuel pressure requirements to be measured at the engine mounted fuel control valve.

- a. Steady State Fuel Pressure Stability +/- .15 psi/sec
- b. Transient fuel Pressure Stability +/- .15 psi/sec

Inlet water temperature to the SCAC must be maintained at specified value for all engines. It is important that the external cooling system design is able to maintain the Inlet water temp to the SCAC to within +/- 1 *C during all engine-operating cycles. The SCAC inlet temperature stability criterion is to maintain stable inlet manifold air temperature. The Air Fuel Ratio control system requires up to 180 seconds to converge after a load step has been performed for NOx to return to nominal setting, if the stabilization time is not met between load steps the transient performance listed in the document may not be met. Differences in generator inertia may change the transient response of engine. Engine Governor gains and Voltage regulator settings may need to be tuned for site conditions. The time needed to start and stabilize at rated engine speed is a minimum of 60 seconds after a successful crank cycle. Engines must be maintained in accordance to guidelines specified in the Caterpillar Service Manuals applicable to each engine. Wear of components outside of the specified tolerances will affect the transient capability of the engine. Transient performance data is representative of a "Hot" (previously loaded or fully heat soaked) genset.

NOTES

- 1. For unloading the engine to 0% load from a loaded condition no external input is needed. The engine control algorithm employs a load sensing strategy to determine a load drop. In the event that the local generator breaker opens the strategy provides control to the engine that resets all control inputs to the rated idle condition. This prevents engine over speeding and will allow the engine to remain running unloaded at the rated synchronous speed.
- 2. The engines specified above have been tested against the voltage deviation, frequency deviation, and recovery time requirements defined in ISO 8528 5. At this time the engines stated above will meet class G1 transient performance as defined by ISO 8528 5 with exceptions.

STANDBY POWER RATING

100 kW, 125 kVA, 60 Hz

PRIME POWER RATING*

90 kW, 113 kVA, 60 Hz

*Built in the USA using domestic and foreign parts

^{*}EPA Certified Prime ratings are not available in the U.S. or its Territories.

Image used for illustration purposes only

CODES AND STANDARDS

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41

os pd IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

POWERING AHEAD

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

INDUSTRIAL SPARK-IGNITED GENERATOR SET **EPA Certified Stationary Emergency**

STANDARD FEATURES

ENGINE SYSTEM

General

- · Oil Drain Extension
- · Air Cleaner
- · Fan Guard
- · Stainless Steel flexible exhaust connection
- · Factory Filled Oil & Coolant
- Radiator Duct Adapter (open set only)
- · Critical Exhaust Silencer (enclosed only)

Fuel System

- · Flexible fuel line NPT Connection
- · Primary and secondary fuel shutoff

Cooling System

- · Closed Coolant Recovery System
- UV/Ozone resistant hoses
- · Factory-Installed Radiator
- 50/50 Ethylene glycol antifreeze
- · Radiator drain extension

Engine Electrical System

- · Battery charging alternator
- Battery cables
- Battery tray
- Rubber-booted engine electrical connections
- · Solenoid activated starter motor

ALTERNATOR SYSTEM

- UL2200 Genprotect ™
- · Class H insulation material
- 2/3 Pitch
- Skewed Stator
- **Brushless Excitation**
- Sealed Bearings
- · Amortisseur winding
- · Full load capacity alternator

GENERATOR SET

- · Internal Genset Vibration Isolation
- Separation of circuits high/low voltage
- · Separation of circuits multiple breakers
- Wrapped Exhaust Piping
- · Standard Factory Testing
- · 2 Year Limited Warranty (Standby rated Units)
- 1 Year Warranty (Prime rated units)
- Silencer mounted in the discharge hood (enclosed only)

ENCLOSURE (IF SELECTED)

- · Rust-proof fasteners with nylon washers to protect finish
- High performance sound-absorbing material (L1 & L2)
- Gasketed doors
- · Stamped air-intake louvers
- Air discharge hoods for radiator-upward pointing
- Stainless steel lift off door hinges
- Stainless steel lockable handles
- Rhino Coat™ Textured polyester powder coat

CONTROL SYSTEM

Control Panel

- · Digital H Control Panel Dual 4x20 Display
- · Programmable Crank Limiter
- 7-Day Programmable Exerciser
- · Special Applications Programmable PLC
- RS-232/485
- · All-Phase Sensing DVR
- · Full System Status
- · Utility Monitoring
- · Low Fuel Pressure Indication
- · 2-Wire Start Compatible
- · Power Output (kW)
- Power Factor
- · kW Hours, Total & Last Run

- · Real/Reactive/Apparent Power
- · All Phase AC Voltage
- · All Phase Currents
- Oil Pressure
- · Coolant Temperature
- · Coolant Level
- · Engine Speed
- · Battery Voltage
- Frequency
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/sealed Connectors
- Audible Alarms and Shutdowns
- · Not in Auto (Flashing Light)
- · Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- · Customizable Alarms, Warnings, and Events
- · Modbus protocol
- · Predictive Maintenance algorithm
- · Sealed Boards
- · Password parameter adjustment protection

- · Single point ground
- 15 channel data logging
- · 0.2 msec high speed data logging
- Alarm information automatically comes up on the display

Alarms

- Oil Pressure (Pre-programmable Low Pressure Shutdown)
- Coolant Temperature (Pre-programmed High Temp Shutdown)
- Coolant Level (Pre-programmed Low Level Shutdown)
- Low Fuel Pressure Alarm
- Engine Speed (Pre-programmed Over speed Shutdown)
- Battery Voltage Warning
- Alarms & warnings time and date stamped
- Alarms & warnings for transient and steady state conditions
- Snap shots of key operation parameters during alarms & warnings
- Alarms and warnings spelled out (no alarm codes)

SG100

9.0L | 100 kW

INDUSTRIAL GENERAC

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

CONFIGURABLE OPTIONS

ENGINE SYSTEM

General

O Engine Block Heater

- O Oil Heater
- O Air Filter Restriction
- O Stone Guad (Open Set Only)

Engine Electrical System

- O (10A) & 2.5A UL battery charger
- O Battery Warmer

ALTERNATOR SYSTEM

- O Alternator Upsizing
- O Anti-Condensation Heater
- O Tropical Coating
- O Permanent Magnet Excitation

CIRCUIT BREAKER OPTIONS

O Main Line Circuit Breaker

- O 2nd Main Line Circuit Breaker
- O Shunt Trip and Auxiliary Contact
- O Electronic Trip Breaker

GENERATOR SET

- O Gen-Link Communications Software (English Only)
- O Extended Factory Testing (3 Phase Only)
- O IBC Seismic Certification
- O 8 Position Load Center
- O 2 Year Extended Warranty
- O 5 Year Warranty
- O 5 Year Extended Warranty

ENCLOSURE

- O Standard Enclosure
- O Level 1 Sound Attenuation
- O Level 2 Sound Attenuation

O Steel Enclosure

- O Aluminum Enclosure
- O 150 MPH Wind Kit
- O 12 VDC Enclosure Lighting Kit
- O 120 VAC Enclosure Lighting Kit
- O AC/DC Enclosure Lighting Kit
- O Door Alarm Switch

CONTROL SYSTEM

- O NFPA 110 Compliant
- O Remote Relay Board (8 or 16)
- O Oil Temperature Sender with Indication Alarm
- O Remote E-Stop (Break Glass-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Flush Mount)
- O Remote Communication Bridge
- O Remote Communication Ethernet
- O 10A Run Relay
- O Ground Fault Indication and Protection **Functions**

ENGINEERED OPTIONS

ENGINE SYSTEM

- O Coolant heater ball valves
- O Fluid containment pans

ALTERNATOR SYSTEM

O 3rd Breaker Systems

CONTROL SYSTEM

- O Spare inputs (x4) / outputs (x4) H Panel Only
- O Battery Disconnect Switch

GENERATOR SET

- O Special Testing
- O Battery Box

ENCLOSURE

- O Motorized Dampers
- O Intrusion Alert Door Switch
- O Ambient Heaters

RATING DEFINITIONS

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability.

Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of every 12 hours. The Prime Power option is only available on International applications. Power ratings in accordance with ISO 8528-1, Second Edition

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

APPLICATION AND ENGINEERING DATA

General		Cooling System	
Make	Generac	Cooling System Type	Pressurized Closed
Cylinder #	8	Water Pump Flow -gal/min (I/min)	26 (98)
Type	V	Fan Type	Pusher
Displacement - L (cu In)	8.9L (540)	Fan Speed (rpm)	2330
Bore - mm (in)	114.23 (4.49)	Fan Diameter mm (in)	558 (22)
Stroke - mm (in)	107.15 (4.25)	Coolant Heater Wattage	1500
Compression Ratio	10.5:1	Coolant Heater Standard Voltage	120 V
Intake Air Method	Naturally Aspirated		
Number of Main Bearings	5		
Connecting Rods	Forged	Fuel System	
Cylinder Head	Cast Iron	Fuel Type	Natural Gas, Propane Vapo
Cylinder Liners	No	Carburetor	Down Draft
Ignition	High Energy	Secondary Fuel Regulator	Standard
Piston Type	Aluminum Alloy	Fuel Shut Off Regulator	Standard
Crankshaft Type	Forged Steel	Operating Fuel Pressure (Standard)	11" - 14" H ₂ 0
Lifter Type	Hydraulic Roller	Operating Fuel Pressure (Optional)	7" - 14" H ₂ 0
Intake Valve Material	Steel Alloy	operating rater resource (optional)	
Exhaust Valve Material	Stainless Steel		
Hardened Valve Seats	Yes	Engine Electrical System	
Engine Governing		System Voltage	12 VDC
	Electronic	Battery Charging Alternator	Standard
Governor Frequency Regulation (Steady State)	Electronic ±0.25%	Battery Size	See Battery Index 0161970SBY
		Battery Voltage	12 VDC
Lubrication System		Ground Polarity	Negative
Oil Pump Type	Gear		
Oil Filter Type	Full-flow sping-on cartridge		
Crankcase Capacity - L (qts)	8.5 (8.0)		

ALTERNATOR SPECIFICATIONS

Standard Model	390mm	Standard Excitation	Brushless
Poles	4	Bearings	Sealed Ball
Field Type	Revolving	Coupling	Direct Drive
Insulation Class - Rotor	Н	Prototype Short Circuit Test	Yes
Insulation Class - Stator	Н	Voltage Regulator Type	Full Digital
Total Harmonic Distortion	<5%	Number of Sensed Phases	All
Telephone Interference Factor (TIF)	<50	Regulation Accuracy (Steady State)	±0.25%

INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary Emergency

OPERATING DATA

POWER RATINGS

		Natural Gas	Propane Vapor
Single-Phase 120/240 VAC @1.0pf	100 kW	Amps: 417	Amps: 417
Three-Phase 120/208 VAC @0.8pf	(100 kW)	Amps: (347)	Amps: 347
Three-Phase 120/240 VAC @0.8pf	100 kW	Amps: 301	Amps: 301
Three-Phase 277/480 VAC @0.8pf	100 kW	Amps: 150	Amps: 150
Three-Phase 347/600 VAC @0.8pf	100 kW	Amps: 120	Amps: 120

STARTING CAPABILITIES (sKVA)

sKVA	2V	Voltage	Din

480 VAC								208/2	40 VAC				
Alternator	kW	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	100	79	118	157	197	236	275	59	89	118	148	177	206
Upsize 1	130	116	174	232	290	348	406	87	131	174	218	261	305

FUEL CONSUMPTION RATES*

Natural Gas - ft ³/hr (m ³/hr)

Propane Vapor - ft 3/hr (m 3/hr)

Percent Load	(Standby)	Percent Load	Standby
25%	391 (11.1)	25%	157.4 (4.5)
50%	669 (19.0)	50%	269.9 (7.6)
75%	904 (25.6)	75%	364.4 (10.3)
100%	1116 (31.6)	100%	449.8 (12.7)

^{*} Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

Air Flow (inlet air combustion and radiator)	ft ³ /min(m ³ /min)	5797 (164.2)
Coolant Flow per Minute	gal/min (l/min)	26 (98)
Coolant System Capacity	gal (I)	6.0 (22.7)
Heat Rejection to Coolant	BTU/hr	390,000
Max. Operating Ambient Temperature (before derate)	°F (°C)	122 (50)
Maximum Radiator Backpressure	in H ₂ 0	0.5

COMBUSTION AIR REQUIREMENT

St	an	dt	Эy

Flow at Rated Power cfm (m³/min) 282 (7.9)

ENGINE

EXHAUST

		Standby		Standby
Rated Engine Speed	rpm	1800	Exhaust Flow (Rated Output) cfn	n (m³/min) 866 (24.5)
Horsepower at Rated kW**	hp	149	Max. Backpressure (Post Turbo) inh	lg (Kpa) 1.5 (5.1)
Piston Speed	ft/min	1275	Exhaust Temp (Rated Output - post silencer) °F	(°C) 1230 (666
BMEP	psi	125	Exhaust Outlet Size (Open Set) mr	m (in) 63.5 (2.5)

^{**} Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

INDUSTRIAL SPARK-IGNITED GENERATOR SET **EPA Certified Stationary Emergency**

DIMENSIONS AND WEIGHTS*

OPEN SET (Includes Exhaust Flex)

L x W x H in (mm) 94.2 (2394) x 40 (1016) x 47.5 (1206) Weight lbs (kg) 2064 (936.2)

STANDARD ENCLOSURE

L x W x H in (mm) 111.79 (2839.5) x 40.46 (1027.8) x 56.18 (1427) Steel: 2708 (1228) Weight lbs (kg) Aluminum: 2413 (1094)

LEVEL 1 ACOUSTIC ENCLOSURE

L x W x H in (mm) (129.42 (3287.2) x 40.46 (1027.8) x 56.18 (1427)

Steel: 2798 (1269.2) Weight lbs (kg) Aluminum: 2355 (1068)

LEVEL 2 ACOUSTIC ENCLOSURE

L x W x H in (mm) 111.81 (2840) x 40.46 (1027.8) x 68.61 (1742.8) Steel: 3022 (1370.8) Weight lbs (kg) Aluminum: 2431 (1103)

*All measurements are approximate and for estimation purposes only.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER	

Specification characteristics may change without notice. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

STATEMENT OF EXHAUST EMISSIONS 2015 SPARK-IGNITED, SCAQMD CERTIFIED

			EPA Engine		CAT	SCAQMD	EPA	G	rams/bhp-h	ır.	Rated	tated BUD	
	Model	Engine	Family	Fuel	Req'd	CEP#	Cert #	тнс	NOx	со	RPM	ВНР	Fuel Flow (lb/hr)
	QTA25	2.4	FGNXB02.42NN	NG	No	NR	FGNXB02.42NN-005	2.14	2.37	93.95	1800	38.39	16.52
	QTA25	2.4	FGNXB02.42NL	LPG	No	NR	FGNXB02.42NL-006	1.43	4.38	86.18	1800	43.29	17.59
	SG035	5.4	FGNXB05.42L1	NG	Yes	530212	FGNXB05.42L1-019	0.38	0.22	0.64	1800	81.95	24.91
	SG035	5.4	FGNXB05.42L2	LPG	Yes	530215	FGNXB05.42L2-020	0.04	0.10	0.70	1800	81.70	29.13
(iii	SG040	5.4	FGNXB05.42L1	NG	Yes	530212	FGNXB05.42L1-019	0.38	0.22	0.64	1800	81.95	24.91
l %	SG040	5.4	FGNXB05.42L2	LPG	Yes	530215	FGNXB05.42L2-020	0.04	0.10	0.70	1800	81.70	29.13
SSIE (SORE)	SG045	5.4	FGNXB05.42L1	NG	Yes	530212	FGNXB05.42L1-019	0.38	0.22	0.64	1800	81.95	24.91
	SG045	5.4	FGNXB05.42L2	LPG	Yes	530215	FGNXB05.42L2-020	0.04	0.10	0.70	1800	81.70	29.13
· s	SG050	5.4	FGNXB05.42L1	NG	Yes	530212	FGNXB05.42L1-019	0.38	0.22	0.64	1800	81.95	24.91
Small Spark Ignited Engines	SG050	5.4	FGNXB05.42L2	LPG	Yes	530215	FGNXB05.42L2-020	0.04	0.10	0.70	1800	81.70	29.13
ᄪ	SG050	6.8	FGNXB06.82L5	NG	Yes	470347	FGNXB06.82L5-025	0.21	0.02	0.19	1800	85.65	33.10
ni ţē.	SG050	6.8	FGNXB06.82L6	LPG	Yes	470347	FGNXB06.82L6-026	0.01	0.05	0.50	1800	85.92	34.14
ᅙ	SG060	6.8	FGNXB06.82L5	NG	Yes	468721	FGNXB06.82L5-025	0.22	0.02	0.35	1800	99.58	37.58
Spar	SG060	6.8	FGNXB06.82L6	LPG	Yes	468721	FGNXB06.82L6-026	0.01	0.01	0.76	1800	99.15	38.69
a s	SG070	6.8	FGNXB06.82L3	NG	Yes	470208	FGNXB06.82L3-023	0.20	0.04	0.49	1800	110.64	41.00
S	SG070	6.8	FGNXB06.82L4	LPG	Yes	470208	FGNXB06.82L4-024	0.08	0.07	0.91	1800	112.42	42.35
	SG080	8.0	FGNXB08.02L1	NG	Yes	575822	FGNXB08.02L1-027	0.42	0.51	0.07	1800	125.69	39.76
	SG080	8.0	FGNXB08.02L2	LPG	Yes	575823	FGNXB08.02L2-028	0.04	0.13	0.30	1800	127.89	44.69
	SG080	9.0	FGNXB08.92L1	NG	Yes	543428	FGNXB08.92L1-029	0.38	0.76	0.41	1800	126.31	39.71
	SG080	9.0	FGNXB08.92L2	LPG	Yes	543429	FGNXB08.92L2-030	0.06	0.68	0.30	1800	126.40	44.34
	SG130 (DF)	6.8	FGNXB06.82C3	NG & LP	Yes	480473	FGNXB06.82C3-033	0.06	0.05	0.92	3000	193.49	72.31
	SG150 (DF)	6.8	FGNXB06.82C3	NG & LP	Yes	480069	FGNXB06.82C3-033	0.18	0.03	1.54	3600	231.00	91.34
	SG100	9.0	FGNXB08.92C1	NG	Yes	543423	FGNXB08.92C1-035	0.17	0.003	0.06	(1800)	148.90	46.86
	SG100 (LPF)	9.0	FGNXB08.92C1	NG	Yes	573274	FGNXB08.92C1-035	0.06	0.240	0.01	1800	156.00	43.83
	SG100 (DF)	9.0	FGNXB08.92C1	NG/LPV	Yes	543425	FGNXB08.92C1-035	0.30	0.400	0.79	1800	133.16	45.36
	SG100 (DF)	9.0	FGNXB08.92C1	NG/LPL	Yes	543424	FGNXB08.92C1-035	0.34	0.006	1.10	1800	135.75	45.47
	SG100	9.0	FGNXB08.92C2	LPV	Yes	543426	FGNXB08.92C2-036	0.03	0.08	0.13	1800	157.67	53.08
	SG100	9.0	FGNXB08.92C2	LPL	Yes	543427	FGNXB08.92C2-036	0.07	0.04	0.30	1800	156.15	54.47
	SG130,150	9.0	FGNXB08.92C3	NG	Yes	573276	FGNXB08.92C3-053	0.10	0.03	0.02	1800	230.30	71.97
	SG130,150 (DF)	9.0	FGNXB08.92C3	NG/LPV	Yes	573273	FGNXB08.92C3-053	0.10	0.03	0.02	1800	230.30	71.97
	SG130,150 (DF)	9.0	FGNXB08.92C3	NG/LPL	Yes	573271	FGNXB08.92C3-053	0.10	0.03	0.02	1800	230.30	71.97
	SG130, 150	9.0	FGNXB08.92C4	LPV	Yes	573267	FGNXB08.92C4-054	0.02	0.57	1.30	1800	230.30	75.43
Θ	SG130, 150	9.0	FGNXB08.92C4	LPL	Yes	573269	FGNXB08.92C4-054	0.02	0.57	1.30	1800	230.30	75.43
Engines (LSIE)	SG150	12.9	FGNXB12.92C2	NG	Yes	532838	FGNXB12.92C2-042	0.53	0.13	0.53	1800	307.87	107.99
nes	MG150	12.9	FGNXB12.92C2	NG	Yes	532839	FGNXB12.92C2-042	0.53	0.13	0.53	1800	307.87	107.99
ig	SG175	12.9	FGNXB12.92C2	NG	Yes	532838	FGNXB12.92C2-042	0.53	0.13	0.53	1800	307.87	107.99
ed	SG200	12.9	FGNXB12.92C2	NG	Yes	532838	FGNXB12.92C2-042	0.53	0.13	0.53	1800	307.87	107.99
gui	MG200	12.9	FGNXB12.92C2	NG	Yes	532839	FGNXB12.92C2-042	0.53	0.13	0.53	1800	307.87	107.99
park Ignited	SG230	12.9	FGNXB12.92C2	NG	Yes	536816	FGNXB12.92C2-042	0.38	0.03	0.53	1800	379.10	125.30
l O	SG250	12.9	FGNXB12.92C2	NG	Yes	536816	FGNXB12.92C2-042	0.38	0.03	0.53	1800	379.10	125.30
Large	MG250	12.9	FGNXB12.92C2	NG	Yes	536818	FGNXB12.92C2-042	0.38	0.03	0.53	1800	379.10	125.30
_	SG275	12.9	FGNXB12.92C3	NG	Yes	557131	FGNXB12.92C3-043	0.06	0.06	0.81	2150	477.00	164.20
	SG300	12.9	FGNXB12.92C3	NG	Yes	557131	FGNXB12.92C3-043	0.06	0.06	0.81	2150	477.00	164.20
	MG300	12.9	FGNXB12.92C3	NG	Yes	557132	FGNXB12.92C3-043	0.06	0.06	0.81	2150	477.00	164.20
	SG150,175,200	14.2L	FGNXB14.22C1	NG	Yes	575824	FGNXB14.22C1-047	0.06	0.05	0.39	1800	304.00	98.54
	SG230, 250	14.2L	FGNXB14.22C1	NG	Yes	575826	FGNXB14.22C1-047	0.06	0.05	0.39	1800	304.00	98.54
	SG275, 300	14.2L	FGNXB14.22C1	NG	Yes	575828	FGNXB14.22C1-047	0.04	0.02	0.23	1800	374.00	120.84
	MG150, 200	14.2L	FGNXB14.22C1	NG	Yes	575825	FGNXB14.22C1-047	0.04	0.02	0.23	1800	374.00	120.84
	MG250	14.2L	FGNXB14.22C1	NG	Yes	575827	FGNXB14.22C1-047	0.03	0.03	0.17	1800	460.00	142.87
	MG300	14.2L	FGNXB14.22C1	NG	Yes	575829	FGNXB14.22C1-047	0.03	0.03	0.17	1800	460.00	142.87
	SG350, 400	21.9	FGNXB21.92C1	NG	Yes	558477	FGNXB21.92C1-037	0.18	0.14	0.82	1800	636.00	201.17
	MG350, 400	21.9	FGNXB21.92C1	NG	Yes	558478	FGNXB21.92C1-037	0.18	0.14	0.82	1800	636.00	201.17
	SG350,400 (LPF)	21.9	FGNXB21.92C1	NG	Yes	573266	FGNXB21.92C1-037	0.18	0.14	0.82	1800	636.00	201.17
	MG350,400 (LPF)	21.9	FGNXB21.92C1	NG	Yes	573265	FGNXB21.92C1-037	0.18	0.14	0.82	1800	636.00	201.17
	NR: Not Required			I					l	I	I	L	

NR: Not Require

DF: Dual Fuel

LPF: Units with optional Low Pressure Fuel system Refer to page 2 for definitions and advisory notes.

STATEMENT OF EXHAUST EMISSIONS) 2015 SPARK-IGNITED, SCAQMD CERTIFIED

2015 EPA SPARK-IGNITED EXHAUST EMISSIONS DATA

Effective since 2009, the EPA has implemented exhaust emissions regulations on stationary spark-ignited (gaseous) engine generators for emergency applications. All Generac spark-ignited gensets, including SG, MG, QTA and QT series gensets, that are built with engines manufactured in 2009 and later meet the requirements of 40CFR part 60 subpart JJJJ and are EPA certified. These generator sets are labeled as EPA Certified with decals affixed to the engines' valve covers.

The attached documents summarize the general information relevant to EPA certification on these generator sets. This information can be used for submittal data and for permitting purposes, if required. These documents include the following information:

EPA Engine Family

The EPA Engine Family is assigned by the Manufacturer under EPA guidelines for certification purposes and appears on the EPA certificate.

Catalyst Required

Indicates whether an exhaust catalyst and Air/Fuel Ratio control system are required on the generator set to meet EPA certification requirements. Generally, units rated 80kW and smaller do not require a catalyst to meet EPA certification requirements. Please note that some units that do not require a catalyst to meet EPA requirements do need a catalyst if the California SCAQMD option is selected. Please see "California SCAQMD" below for additional information on this option.

Combination Catalyst or Separate Catalyst

SG and MG series generator sets typically utilize a single combination catalyst/silencer as part of meeting EPA certification requirements. Many QT and QTA series generator sets use the same engines as SG and MG series units, but have different exhaust configurations that require the use of conventional silencers with additional separate catalysts installed.

EPA Certificate Number

Upon certification by the EPA, a Certificate Number is assigned by the EPA.

Emissions Actuals -Grams/bhp-hr

Actual exhaust emission data for Total Hydrocarbons (THC), Nitrogen Oxides (NOx) and Carbon Monoxide (CO) that were submitted to EPA and are official data of record for certification. This data can be used for permitting if necessary. Values are expressed in grams per brake horsepowerhour; to convert to grams/kW-hr, multiply by 1.341. Please see advisory notes below for further information.

California Units, SCAQMD CEP Number

A separate low-emissions option is available on many Generac gaseous-fueled generator sets to comply with the more stringent South Coast Air Quality Management District requirements that are recognized in certain areas in California. Gensets that include this option are also EPA Certified.

General Advisory Note to Dealers

The information provided here is proprietary to Generac and its' authorized dealers. This information may only be disseminated upon request, to regulatory governmental bodies for emissions permitting purposes or to specifying organizations as submittal data when expressly required by project specifications, and shall remain confidential and not open to public viewing. This information is not intended for compilation or sales purposes and may not be used as such, nor may it be reproduced without the expressed written permission of Generac Power Systems, Inc.

Advisory Notes on Emissions Actuals

- The stated values are actual exhaust emission test measurements obtained from units representative of the generator types and engines described.
- Values are official data of record as submitted to the EPA and SCAQMD for certification purposes. Testing was conducted in accordance with prevailing EPA
 protocols, which are typically accepted by SCAQMD and other regional authorities.
- No emission values provided are to be construed as guarantees of emissions levels for any given Generac generator unit.
- Generac Power Systems reserves the right to revise this information without prior notice.
- Consult state and local regulatory agencies for specific permitting requirements.
- The emissions performance data supplied by the equipment manufacturer is only one element required toward completion of the permitting and installation process. State and local regulations may vary on a case-by-case basis and must be consulted by the permit applicant/equipment owner prior to equipment purchase or installation. The data supplied herein by Generac Power Systems cannot be construed as a guarantee of installability of the generator set.
- The emission values provided are the result of multi-mode, weighted scale testing in accordance with EPA testing regulations, and may not be representative of any specific load point.
- The emission values provided are not to be construed as emission limits.

THREE PASS FIRETUBE HOT WATER BOILER

■ HURST "PERFORMANCE" BOILERS ■

LPW SERIES

THROUGH THE DOOR DESIGN!

Hot Water Applications

Designed, constructed and stamped in accordance with the requirements of the ASME Boiler Codes.

UL Approved Forced Draft Burners

HEAVIEST DESIGNED BOILER IN ITS CLASS

BOILER SPECIFICATIONS (ALL DIMENSIONS ARE IN INCHES)

RIGHT SIDE VIEW

BOILER HORSEPOWER			30	40	50	60	70	80	100	125
HEATING SURFACE	FIRESIDE	SQ.FT.	120	160	200	240	280	320	400	500
MBH OUTPUT, HOT WATER			1004	1339	1674	2009	2343	2678	3348	4184
FIRING RATE, GAS	1,000 BTU	CFH	1260	1680	2100	2520	2940	3360	4200	5250
FIRING RATE, #2 OIL	140,000 BTU	GPH	9	12	15	18	21	24	30	37 1/2
WIDTH WITHOUT TRIM		IN	31	31	31	34 1/2	34 1/2	3472	34 1/2	34 1/2
WIDTH WITH TRIM		IN	38	38	38	42	42	42	42	42
WIDTH WITH GAS TRAIN		IN	49	49	49	52	52	52	52	52
BOILER LENGTH		IN	37	49	61	55	67	79	91	106
OVERALL LENGTH	STD. BURNER	IN	86	98	114	111	123	140	152	169
SUPPLY HEIGHT		IN	71 1/2	71 1/2	71 1/2	76 5/8	76 5/8	76 5/8	76 5/8	76 5/8
HEIGHT WITH TRIM		IN	79	79	79	86	86	86	86	86
LENGTH OF SKID		IN	54	66	78	72	84	96	108	123
SUPPLY SIZE		IN	4	4	4	6	6	6	6	6
SUPPLY LOCATION		IN	18 1/2	24 1/2	30 1/2	27 1/2	33 1/2	39 1/2	45 1/2	50 1/2
RETURN SIZE		IN	4	4	4	4	4	4	4	4
RETURN LOCATION		IN	27 1/4	27 1/4	27 1/4	32	32	32	32	36
BOILER DRAIN SIZE		IN	1	1 1/4	1 1/4	1 1/4	1 1/2	1 1/2	1 1/2	1 1/2
STACK DIAMETER, O.D.		IN	10	10	10	12	12	12	12	14
STACK HEIGHT		IN	60 1/4	60 1/4	60 1/4	67 1/4	67 1/4	67 1/4	67 1/4	67 1/4
TO CENTER OF STACK		IN	6 7/8	6 7/8	6 7/8	8 1/4	8 1/4	8 1/4	8 1/4	9 1/4
REAR SMOKEBOX DEPTH		IN	13 3/4	13 3/4	13 3/4	15 3/4	15 3/4	15 3/4	15 3/4	17 3/4
TUBE PULL SPACE		IN	38	50	62	56	68	80	92	107
SHIPPING WEIGHT		LBS	3150	3900	4500	4350	5100	5900	6600	7500
WATER CONTENT - WATER	FLOODED	GALS	135	185	240	250	310	390	430	500
BOILER HORSEPOWER			30	40	50	60	70	80	100	125

CONNECTIONS FOUR INCHES AND SMALLER ARE FEMALE THREAD, 6" CONNECTIONS ARE 150 LB. FLANGES. * STUDDING FLANGE.

HOT WATER BOILER

STANDARD EQUIPMENT

BOILER: Three pass design for 30 psi hot water (available for 60 psi water). Factory assembled with trim and, tested in accorance with ASME code, UL, and CSD-1 codes. Steel turbolators inserted in third pass for maximum heat-transfer control.

STANDARD BOILER TRIM: Kunkle safety relief valve, operating temperature control, high limit temperature control with manual reset, 3 1/2" combination pressure & temperature gauge, M&M 750 low water cut-off control with manual reset.

BURNER: UL listed with pre-piped, wired and factory tested forced draft power burners for:

- Natural Gas
- Propane (LP) Gas
- No. 2 (Diesel) Oil
- Combination Gas/Oil.

■ HURST "PERFORMANCE" BOILER ■

- Factory Assembled, Prewired and Tested
- No Field Assembly Required
- UL Listed Boiler/Burner Packages
- Fully Assembled, Pre-piped, Prewired, Pressure Tested Gas Trains
- Complies with ASME, UL, CSD-1 and ASHRAE Standards
- High Efficiency, Low Stack Temperatures
- Customer Service Support Through National Network of Sales, Service, St Training and Parts by Factory Representatives

LPW BOILER FEATURES

Modified Scotch designed to fit through a standard 36" x 80" door opening Up to 125 HP (4,184 mbh output).

The Hurst LPW "Performance" boiler is America's most heavily designed and built boiler in its class. Consider the features and specify the Hurst LPW Series.

- A welded steel firetube boiler, the LPW has extra-heavy 13-gauge tubes for extended life.
 All tubes are attached to the tube sheets by rolling and flaring. There are no welded tubes in the LPW.
- 2. Thickest materials used in the industry
 - A. Boiler shell is 5/16" thick boiler plate 30-40 HP / 3/8" 50-125 HP.
 - B. Twin boiler tube sheets are 1/2" thick boiler plate.
 - C. Insulation is 2" ceramic wool and is lagged with 22-gauge boiler jacket.
 - D. Extra heavy 4" channel iron boiler skids.
- 3. Designed to last with special industrial grade features . . .
 - A. Couplings are 3,000 psi.
 - B. Flanged, detachable front and rear smoke boxes.
 - C. Brass nuts on front access panels, brass plugs in factory pre-piped crosses and tees on trim.

hurstboiler.com

Revised 06/05

P. O. Drawer 530 21971 Highway 319 N. Coolidge, Georgia 31738 (229) 346-3545 (Tel.) (229) 346-3874 (Fax.) e-mail: info@hurstboiler.com