ATLANTIC COAST PIPELINE, LLC ATLANTIC COAST PIPELINE

Construction, Operations, and Maintenance Plans

ATTACHMENT O

Appalachian National Scenic Trail HDD Plan and Profile Drawings

Previously filed with FERC on August 1, 2016 (Accession No. 20160801-5228)

Blue Ridge Parkway

Supporting Information

- Plan & profile drawing presenting HDD crossing design (2 pages, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- RED ARE BASED ON A GENERAL GEOLOGIC PROFILE INCLUDED IN THE GEOTECHNICAL SITE INVESTIGATION REPORT AS FIGURE 4.
- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

2.

З,

- 3. ELEVATION: UP TO 5 FEET ABOVE AND 30 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 15 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 2,800 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

MDDIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

Image: Section					
Image: Signal		VAY		REVISION	0
Image: Signer	JECT	R PARKW G		i LABEL	RKWAY 1
Jeffrey S. Puckett, P.E. ATLANTIC COAST PIPELINI Jeffrey S. Puckett, P.E. Jeffrey S. Puckett, P.E. Jeffrey S. Puckett, P.E. Jeffrey S. Puckett Jeffrey S. Puckett Jeffrey S. Puckett Jules Joint Jeffrey S. Puckett Jules Joint Jeffrey S. Puckett Jules Joint Jeffrey Jeffrey Juley Joi	E PRO	E RIDGE DRILLIN		DRAWING	BR PAF
ATLANTIC COAST PIP ATLANTIC COAST PIP Consulting Engineer Deffrey S. Puckett, P.E. ATLANTIC COAST PIP Lana Num Press PLANTIC COAST PIP PLANTIC PLANTIC COAST PIP PLANTIC PLANTIC COAST PIP PLANTIC PLANTIC COAST PIP PLANTIC PLANTIC	ELINE	OFILE HE BLU IONAL I	VIRGINIA	LE LE	OWN FOR
Defined Subscription ATLANTIC COA. Defined Subscription Partantia Plantic Consulting Engineer Plantic Coal. Consulting Engineer Plantic Coal. Plantic Coal. Plantic Coal. Plantic Store Plantic Coal. Plantic Coal. Plantic Coal.	ST PIP	AND PR VG OF T DIRECT	COUNTY,	VED SCA	P S S S S
ATLANTIC Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Superstand Superstand No. DATE By CHKDIA ATLANTIC ATLANTIC ATLANTIC ATLANTIC ATLANTIC Jeffrey S. Puckett, P.E. Consulting Engineer By HORIZ By HORIZ Sulte 510 No. DATE No. DATE By CHKDIA By CHKDIA MIN By CHKDIA MIN By CHKDIA MIN By CHKDIA	COA	PLAN ROSSIN	& NELSON	D APPRC	ISC
ATLA Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer BY BY BY BY BY CHIPTIP BY BY Constitution BY Constitution BY Constitution BY Constitution By By Constitution By Const	NTIC	ELINE C HORIZ	COUNTY 8	CHECKEI	DMP
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Solue 510 No. DATE REVISION DESCRIPTION BY CHKD APP. KMN KMN	ATLA	(CH PIP) BY	AUGUSTA	DATE	05/19/16
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Consulting Engineer Superstreet Superstreet No. DATE No. DATE NO		42-IN	LOCATION:	DRAWN	KMN
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Consulting Engineer Suite 510 Suite 510 No. DATE REVISION DESCRIPTION REVISION DESCRIPTION NO. DATE REVISION DESCRIPTION					APP.
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Consulting Engineer Suite 510 Suite 510 No. DATE REVISION DESCRIPTION NO. DATE REVISION DESCRIPTION					CHKD /
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Consulting Engineer Suite 510 Suite 510 No. DATE No. DATE REVISION DESCRIPTION REVISION DESCRIPTION					BY (
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Consulting Engineer No. DATE Sulte 510 No. DATE No. DATE No. DATE					REVISION DESCRIPTION
Deffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Suite 510 Suite 510 Tulsa. Oklahoma 74114 No. Alago Nurce 100 Nurce 100					DATE
Jeffrey S. Puckett, P.E. Consulting Engineer Consulting Engineer Nuckett, P.E. 2424 East 21st Street Sulte 510 Tulsa. Okdahoma 74114 Tulsa. Okdahoma 74114					NO.
PROJECT NO. Dominion\1508 MILE POST AP1-158		ickett, P.E.		eet	4114
MILE POST AP1-158		Jeffrey S. Pu Consulting Engin		2424 East 21st Stru	Suite 510 Tulsa, Oklahoma
		Jeffrey S. Pu Consulting Engin	ect N4	12 0. 2424 East 21st Str	Suite 510 Tulsa, Oklahoma

DRILLED PATH ENTRY/EXIT PDINT

GEDTECHNICAL LEGEND

SPLIT SPOON SAMPLE

CONTAINING GRAVEL

CORE BARREL SAMPLE

- UCS 6, 250 UNCONFINED COMPRESSIVE STRENGTH (PSI)
- ---- MOHS HARDNESS 53_6
- -ROCK QUALITY DESIGNATION (PERCENT)

- 1. GEDTECHNICAL DATA PROVIDED BY GEDSYNTEC CONSULTANTS, RICHMOND, VIRGINIA. REFER TO THE GEDTECHNICAL SITE INVESTIGATION REPORT FOR MORE DETAILED SUBSURFACE INFORMATION.
- 2. THE LETTER "N" TO THE LEFT OF A SPLIT SPOON SAMPLE INDICATES THAT NO GRAVEL WAS DESERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS DESERVED BUT NO GRADATION TEST WAS PERFORMED.
- 3. THE GEDIECHNICAL DATA IS DNLY DESCRIPTIVE DF THE LDCATIDNS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE DF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR WHOT USE UND SUM EXPERIENCE MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 4. STRATIFICATION LINES AND SUBSURFACE MATERIAL DESCRIPTIONS SHOWN ON THIS DRAWING HAVE BEEN SIMPLIFIED FOR PRESENTATION PURPOSES.
- 5. THE ANTICIPATED SUBSURFACE CONDITIONS SHOWN IN RED ARE BASED ON A GENERAL GEOLOGIC PROFILE INCLUDED IN THE GEDTECHNICAL SITE INVESTIGATION REPORT AS FIGURE 4.
- 1. TOPOGRAPHIC SURVEY DATA PROVIDED BY GAI CONSULTANTS, CANONSBURG, PENNSYLVANIA.
- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

1. DRILLED PATH STATIONING IS IN FEET BY HURIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.

2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

3

ATLANTIC COAST PIPELINE PROJECT	ENTRY/EXIT PROFILES - NATURAL SCALE 42-INCH PIPELINE CROSSING OF THE BLUE RIDGE PARKWAY BY HORIZONTAL DIRECTIONAL DRILLING			LOCATION: AUGUSTA COUNTY & NELSON COUNTY, VIRGINIA	DRAWN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	KMN 05/19/16 DMP JSP BHOWN FOR BR PARKWAY 2 0	
							CHK'D APP.
							BY
							REVISION DESCRIPTION
							ATE
							D. D.
		Jettrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	Ι	0	PRO mi	DJE ni LF	CT N ON POS	ю. \15 т	08
		١.	P	1	_1	4	58

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	KM	N
Crossing : 42" Blue Ridge Parkway Crossing	Date :	2/9/20	016
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	; (40' loi	nger
and 30' deeper than design with a 2,800' radius) with 12 ppg	mud with BC		
Line Pipe Properties			
Pipe Outside Diameter =	42.000	in	
Wall Thickness =	0.864	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	23617.82	in ⁴	
Pipe Face Surface Area =	111.66	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	379.58	lb/ft	
Pipe Interior Volume =	8.85	ft ³ /ft	
Pipe Exterior Volume =	9.62	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction =	0.30		
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	551.97	lb/ft	
Displaced Mud Weight =	863.59	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,508	psi	No
For D/t > 3,000,000/SMYS and <= 300, F_{b} =	45,636	psi	Yes
Allowable Bending Stress, F _b =	45,636	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,800	psi	
For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,800	psi	Yes
For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, F_{hc} =	33,444	psi	No
For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	12,016	psi	No
For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,800	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi	

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Exit Point

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 42.000 in PIpe Weight, W = 379.6 Ib/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = 0.025$ psitBallast Weight / ft Pipe, $W_b = 552.0$ lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = 863.6$ lb(If Submerged)Above Ground Load = 0lb
Exit Tangent - S	Summary of Pulling Load Calculations
Segment Length, L = 693.1 ft Exit Angle, $\theta = 8.0$ °	Effective Weight, $W_e = W + W_b - W_m = 68.0$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 13,994$ lb	
Fluidic Drag = 12π D L C _d = 27,436 lb	
Axial Segment Weight = $W_e L \sin\theta = -6,556$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Tangent = 34,874 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L = 391.0 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T =45,691IbRadius of Curvature, R =2,800ftEffective Weight, $W_e = W + W_b - W_m =$ 68.0Ib/ft
h = R [1 - $\cos(\alpha/2)$] = 6.82 ft	j = [(E I) / T] ^{1/2} = 3,872
Y = $[18 (L)^2] - [(j)^2 (1 - \cosh(U/2)^{-1}] = 3.7E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 125.16
U = (12 L) / j = 1.21	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 13,353 lb
Bending Frictional Drag = 2 μ N = 8,012 Ib	
Fluidic Drag = $12 \pi D L C_d = 15,476$ lb	
Axial Segment Weight = $W_e L \sin\theta = -1,853$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Sag Bend =21,634IbTotal Pulling Load =56,508Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 2607.7 ft	Effective Weight, $W_e = W + W_b - W_m = 68.0$ lb/ft
Frictional Drag = W _e L μ = 53,170 lb	
Fluidic Drag = 12π D L C _d = 103,225 lb	
Axial Segment Weight = $W_e L \sin\theta = 0$ lb	
Pulling Load on Bottom Tangent =156,395IbTotal Pulling Load =212,902Ib	

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Entry Sag Bend - Summary of Pulling Load Calculations							
Segment Angle v De	egment Length, L = with Horizontal, θ = eflection Angle, α =	488.7 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	231,351 lb 2,800 ft 68.0 lb/ft			
h	= R [1 - cos(α/2)] =	10.65 ft		$j = [(E I) / T]^{1/2} =$	1,721			
$Y = [18 (L)^2] - [(j)^2]$	² (1 - cosh(U/2) ⁻¹] =	2.4E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	660.90			
	U = (12 L) / j =	3.41	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	24,431 lb			
Bending Friction	onal Drag = 2 μ N =	14,659 lb						
Fluidic Dr	ag = 12 π D L C _d =	19,344 lb						
Axial Segment We	eight = $W_e L \sin \theta =$	2,895 lb						
Pulling Load on I Tot	Entry Sag Bend = al Pulling Load =	36,898 lb 249,800 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
Se	egment Length, L = Entry Angle, θ =	516.9 ft 10.0 °	Effective Weight, W	$V_{e} = W + W_{b} - W_{m} =$	68.0 lb/ft			
Frictional Dra	Frictional Drag = $W_e L \mu \cos\theta = 10,379$ lb							
Axial Segment We	eight = $W_e L \sin\theta =$	6,101 lb						
Pulling Load or Tot	n Entry Tangent = al Pulling Load =	36,942 lb 286,742 lb						
		Summary of Cal	culated Stress vs.	Allowable Stress				
r								
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	2,568 ok	0 ok	0 ok	0.04 ok	0.00 ok			
PC	2,237 ok	0 ok	375 ok	0.04 ok	0.01 ok			
-	2,237 ok 1,907 ok	18,125 ok 18,125 ok	375 ok 571 ok	0.43 ok 0.43 ok	0.14 ok 0.15 ok			
PT	1.907 ok	0 ok	571 ok	0.03 ok	0.01 ok			
	506 ok	0 ok	571 ok	0.01 ok	0.01 ok			
PC	506 ok	18,125 ok	571 ok	0.41 ok	0.13 ok			
PT	312 ok	18,125 ok	445_ok	0.40 ok	0.12 ok			
Exit Point	312 ok 0 ok	0 ok 0 ok	445 ok 0 ok	0.00 ok 0.00 ok	0.00 ok 0.00 ok			

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information						
Project :	Dominion Atlantic Coast Pipeline	User :	KM	N			
Crossing :	Date :	2/9/2	016				
Comments ·	er tolerances	(40' loi	nger				
Comments :	and 30' deeper than design with a 2,800' radius) with 12 ppg r	nud and no E	3C				
	Line Pipe Properties						
	Pipe Outside Diameter =	42.000	in				
	Wall Thickness =	0.864	in				
	Specified Minimum Yield Strength =	70,000	psi				
	Young's Modulus =	2.9E+07	psi				
	Moment of Inertia =	23617.82	in ⁴				
	Pipe Face Surface Area =	111.66	in ²				
	Diameter to Wall Thickness Ratio, D/t =	49					
	Poisson's Ratio =	0.3					
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F				
	Pipe Weight in Air =	379.58	lb/ft				
	8.85	ft ³ /ft					
	9.62	ft ³ /ft					
	HDD Installation Properties						
	12.0	ppg					
	89.8	lb/ft ³					
	62.4	lb/ft ³					
	0.30						
	Fluid Drag Coefficient =						
	551.97	lb/ft					
	863.59	lb/ft					
	Installation Stress Limits						
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi				
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No			
	44,508	psi	No				
	45,636	psi	Yes				
	45,636	psi					
	10,800	psi					
	For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,800	psi	Yes			
	For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, F_{hc} =						
	For $F_{he} > 1.6^*SMYS$ and <= 6.2*SMYS, F_{hc} =						
	For $F_{he} > 6.2*SMYS$, $F_{hc} =$						
	10,800	psi					
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi				

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	and Installation Properties
Based on profile des	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 42.000 in PIpe Weight, W = 379.6 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 552.0lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 863.6lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 693.1 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -484.0$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 99,660$ lb	
Fluidic Drag = 12π D L C _d = 27,436 Ib	
Axial Segment Weight = $W_e L \sin \theta = 46,688$ Ib	
Pulling Load on Exit Tangent = 173,784 Ib	
Exit Sag Bend - S	Summary of Pulling Load Calculations
Segment Length, L =391.0ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = 236,820 Ib Radius of Curvature, R = 2,800 ft Effective Weight, $W_e = W + W_b - W_m = -484.0$ Ib/ft
h = R [1 - cos(α/2)] =ft	j = [(E I) / T] ^{1/2} = 1,701
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 1.2E+06$	X = (3 L) - [(j / 2) tanh(U/2)] = 423.90
U = (12 L) / j =2.76	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 162,328 lb
Bending Frictional Drag = $2 \mu N = 97,397$ Ib	
Fluidic Drag = 12 π D L C _d = 15,476 lb	
Axial Segment Weight = $W_e L \sin \theta = 13,200$ lb	
Pulling Load on Exit Sag Bend = 126,072 Ib Total Pulling Load = 299,856 Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 2607.7 ft	Effective Weight, $W_e = W + W_b - W_m = $ Ib/ft
Frictional Drag = W _e L µ = 378,650 Ib	
Fluidic Drag = $12 \pi D L C_d = 103,225$ lb	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent = 481,875 Ib Total Pulling Load = 781,730 Ib	

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
Segment Length Segment Angle with Horizontal Deflection Angle	h, L = $\frac{488.7}{10.0}$ ft l, θ = $\frac{10.0}{0}$ ° e, α = $\frac{5.0}{0}$ °	A Radii Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	855,318 lb 2,800 ft -484.0 lb/ft				
h = R [1 - cos(α/	/2)] = 10.65 ft		$j = [(E I) / T]^{1/2} =$	895				
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 3.6E+06 \qquad X = (3 L) - [(j / 2) \tanh(U/2)] = 1019.92$								
U = (12 L) / j = 6.55 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 247,408 lb								
Bending Frictional Drag = 2 _F	Bending Frictional Drag = 2 μ N = 148,445 Ib							
Fluidic Drag = $12 \pi D L$	C _d = 19,344 lb							
Axial Segment Weight = $W_e L$ si	inθ =20,615 Ib	Negative value indicat	es axial weight applied	in direction of installation				
Pulling Load on Entry Sag Ber Total Pulling Loa	nd = 147,174 lb ad = 928,905 lb							
	Entry Tangent - S	Summary of Pulling	Load Calculations					
Segment Length, L = 516.9 ft Effective Weight, W _e = W + W _b - W _m = -484.0 lb/ft Entry Angle, θ = 10.0 °								
Frictional Drag = $W_e L \mu cc$	Frictional Drag = $W_e L \mu \cos\theta = 73,917$ lb							
Fluidic Drag = 12 π D L	C _d = 20,462 lb							
Axial Segment Weight = W _e L si	inθ =43,445 Ib	Negative value indicat	es axial weight applied	in direction of installation				
Pulling Load on Entry Tange Total Pulling Loa	ent = 50,934 lb ad = 979,838 lb							
	Summary of Ca	Iculated Stress vs.	Allowable Stress					
Tensile Stre	ess Bending Stress	External Hoop Stress	Combined Tensile & Bending	Bending & Ext. Hoop				
Entry Point 8,775	ok 0 ok	0 ok	0.14 ok	0.02 ok				
PC	ok 0 ok	1230 ok	0.13 ok	0.06 ok				
8,319 7,001	ok 18,125 ok ok 18,125 ok	1230 ok 1874 ok	0.53 ok 0.51 ok	0.29 ok 0.32 ok				
PT7,001	ok 0 ok	1874 ok	0.11 ok	0.10 ok				
PC	ок 0 ок	1874 ok	0.04 ok	0.07 ok				
2,686 1,556	ok 18,125 ok ok 18,125 ok	1874 ok 1461 ok	0.44 ok 0.42 ok	0.25 ok 0.20 ok				
Exit Point 0	ok 0 ok	1461 ok	0.02 ok	0.04 ok				
			0.00 0K	0.00 01				

