APPENDIX R

Road Crossing Methods Table

Appendix R- WV Road Crossing Methods

CROSSING				4.5			MIDTH	07475	0010177	NETHOD
NUMBER	ROAD CROSSING ID	SPREAD NUMBER	MP	AP	ROAD NAME	ROAD NUMBER	WIDTH	STATE	COUNTY	METHOD
1	WV-HAR-0001	SPREAD 1-1	1.07	1	Kincheloe Road	CO 35/3	60	WV	HARRISON	OPEN CUT
2	WV-LEW-0001	SPREAD 1-1	1.42	1	Sand Fork Road	CO 2	60	WV	LEWIS	OPEN CUT
3	WV-LEW-0002	SPREAD 1-1	3.93	1	Elk Lick Road	CO 4/3	60	WV	LEWIS	OPEN CUT
4	WV-LEW-0003	SPREAD 1-1	4.10	1	Oil Road	CO 10/10	60	WV	LEWIS	OPEN CUT
5	WV-LEW-0004	SPREAD 1-1	4.10	1	Hog Camp Run Road	CO 10/10	60	WVV	LEWIS	OPEN CUT
7	WV-LEW-0005	SPREAD 1-1	5.00	1	Turkeypen Creek Road	CO 10/11	60	WV	LEWIS	OPEN CUT
8	WV-LEW-0007	SPREAD 1-1	7.71	1	Hollick Run Boad	CO 1/1	60	WV	LEWIS	OPEN CUT
9	WV-LEW-0008	SPREAD 1-1	8.15	1	Kincheloe Road	CO 1	60+river=100	WV	LEWIS	OPEN CUT
10	WV-LEW-0009	SPREAD 1-1	8.39	1	Elk City Road	CO 8/1	60	WV	LEWIS	BORE
11	WV-LEW-0010	SPREAD 1-1	9.37	1	Broad Run Road	CO 8	60	WV	LEWIS	BORE
12	WV-LEW-0011	SPREAD 1-1	9.68	1	Wymer Run Road	CO 8/3	60	WV	LEWIS	BORE
13	WV-LEW-0012	SPREAD 1-1	10.45	1	Landmark Estate	CO 8/11	60	WV	LEWIS	OPEN CUT
14	WV-LEW-0013	SPREAD 1-1	11.73	1	Sycamore Lick Road	CO 10	60	WV	LEWIS	BORE
15	WV-LEW-0014	SPREAD 1-1	12.65	1	Hidden Cove/ HARP 915	US-19	100	WV	LEWIS	BORE
16	WV-LEW-0015	SPREAD 1-1	14.00	1	Interstate 79	1-79	650	WV	LEWIS	BORE
17	WV-LEW-0016	SPREAD 1-1	14.30	1	Life's Run Road	CO 14	40	WV	LEWIS	BORE
18	WV-LEW-0017	SPREAD 1-1	15.47	1	Cottrill Run Road	CO //4	60	WV	LEWIS	OPEN CUT
19	WV-LEW-0018	SPREAD 1-1	17.15	1	Berlin Road	CO 13	60	WV	LEWIS	BORE
20	WV-LEW-0019	SPREAD 1-2	20.83	1	Laurei Lick Road	CO 32/2	60		LE WIS	OPEN CUT
21	WV-LEW-0020	SPREAD 1-2	20.85	1	Buckhannon Run Road	CO 32/2	60		LE WIS	OPEN CUT
22	WV-LIPS-0001	SPREAD 1-2	23.16	1	Brushy Fork Road	CO 12	60	WV	LIPSHUR	OPEN CUT
23	WV-UPS-0002	SPREAD 1-2	23.19	1	Corridor H US Boute 33/119	US 33/119	400	WV	UPSHUR	BORF
25	WV-UPS-0003	SPREAD 1-2	23.98	1	Fink Run Road	CO 5/5	60	WV	UPSHUR	OPEN CUT
26	WV-UPS-0004	SPREAD 1-2	24.64	1	Right Branch of Brushy Fork	CO 7/4	60	WV	UPSHUR	OPEN CUT
27	WV-UPS-0005	SPREAD 1-2	25.00	1	Golden Pond Lane		60	WV	UPSHUR	OPEN CUT
28	WV-UPS-0006	SPREAD 1-2	25.78	1	Brushy Fork Road	CO 7	60	WV	UPSHUR	BORE
29	WV-UPS-0007	SPREAD 1-2	27.06	1	Stoney Run-Atlas Spruce Fork	CO 14	60	WV	UPSHUR	OPEN CUT
30	WV-UPS-0008	SPREAD 1-2	29.10	1	Kanawha Road	WV-20	80	WV	UPSHUR	BORE
31	WV-UPS-0009	SPREAD 1-2	29.28	1	Mt. Carmel Road/Sago- Tallmansville	CO 22	80	wv	UPSHUR	BORE
32	WV-UPS-0010	SPREAD 1-2	30.45	1	Left Fork French Creek	CO 20/9	60	WV	UPSHUR	OPEN CUT
33	WV-UPS-0011	SPREAD 1-2	31.10	1	CSX RR	RR	80	WV	UPSHUR	BORE
34	WV-UPS-0012	SPREAD 1-2	32.51	1	Sago-Tallmansville	CO 22	60	WV	UPSHUR	BORE
35	WV-UPS-0013	SPREAD 1-2	31.55	1	CSX RR	RR	80	WV	UPSHUR	BORE
36	WV-UPS-0014	SPREAD 1-2	31.63	1	Mount Caramel Road	CO 9/2	60	WV	UPSHUR	OPEN CUT
37	WV-UPS-0015	SPREAD 2-1	33.73	1	Mount Caramel Road	CO 22	60	WV	UPSHUR	BORE
38	WV-UPS-0016	SPREAD 2-1	34.32	1	Our Mills	CO 22/3	60	WV	UPSHUR	BORE
39	WV-UPS-0017	SPREAD 2-1	36.69	1	Laurel Run Road	CO 24	40	WV	UPSHUR	OPEN CUT
40	WV-UPS-0018	SPREAD 2-1	37.55	1	CSX RR	RR	80	WV	UPSHUR	OPEN CUT
41	WV-UPS-0019	SPREAD 2-1	37.60	1	Ten Mile Road	CO 9/8	60	WV	UPSHUR	BORE
42	WV-UPS-0020	SPREAD 2-1	40.54	1	Democrate Ridge	CO 30/18	40	WV	UPSHUR	OPEN CUT
43	WV-UPS-0021	SPREAD 2-1	41.18	1	ADRIAN ABBOTT ROAD	CO 30	60	WV	UPSHUR	BORE
44	WV-UPS-0022	SPREAD 2-1	41.27	1		CO 9/22	60	WV M/V		OPEN CUT
43	WV-0P3-0023	SPREAD 2-1	45.76	1	Adolph Cassity	CO 3/	40			OPEN CUT
40	WV-RAN-0001	SPREAD 2-1	43.27	1	Old Adoptob Road	CO 42	40		RANDOLPH	OPEN CUT
47	WV-RAN-0002	SPREAD 2-2		1	Palace Valley	CO 44		WV	RANDOLPH	OPEN CUT
49	WV-RAN-0004	SPREAD 2-2		1	High Germany Road	CO 46/2		WV	RANDOLPH	OPEN CUT
50	WV-RAN-0005	SPREAD 2-2		1	High Germany Road	CO 46/2		WV	RANDOLPH	OPEN CUT
51	WV-RAN-0006	SPREAD 2-2		1	High Germany Road	CO 46/2		WV	RANDOLPH	OPEN CUT
52	WV-RAN-0007	SPREAD 2-2		1	Adolph Road	CO 46		WV	RANDOLPH	BORE
53	WV-RAN-0008	SPREAD 2-2		1	Turkey Bone Road	CO 45		WV	RANDOLPH	OPEN CUT
63	WV-POCA-0002	SPREAD 3		1	West Virginia Central RR	RR		WV	POCAHONTAS	BORE
64	WV-POCA-0003	SPREAD 3		1	Seneca Trail	US 219		WV	POCAHONTA	BORE
67	WV-POCA-0006	SPREAD 3		1	Gardner Road	CO 1/5		WV	POCAHONTA	BORE
73	WV-POCA-0012	SPREAD 3A		1	Public Road 55	PR 55		WV	POCAHONTA	BORE
534	WV-RAN-0017	SPREAD 2A		1	WV 15	SR 15		WV	RANDOLPH	BORE
535	WV-RAN-0018	SPREAD 2A		1	Valley Fork	CO 49		WV	RANDOLPH	BORE
536	WV-RAN-0019	SPREAD 2A		1	Mingo Run	CO 219/14		WV	RANDOLPH	BORE
537	WV-RAN-0020	SPREAD 3		1	Old Dry Branch Road	CO 51/1		WV	RANDOLPH	BORE
538	WV-POCA-0013	SPREAD 3		1	Dry Branch Road	CO 219/2		WV	POCAHONTA	BORE
539	WV-POCA-0014	SPREAD 3		1	Beverage Road	CO 9/2		WV	POCAHONTA	BORE
540	WV-POCA-0015	SPREAD 3		1	Back Mountain Road	01		WV	POCAHONTAS	BORE
541	WV-POCA-0016	SPREAD 3		1	Greenbrier Kiver Trail	KK (0.1/4		WV	POCAHONTAS	BORE
542	WV-PUCA-0017	SPREAD 3		1	Laurei Kun Koad	CU 1/4		WV	POCAHONTAS	BORE
543	WV-PUCA-0018	SPREAD 3		1	Public Road 1/10	PR 1/10			POCAHONITAS	BORE
544	WV-POCA-0019	SDREAD 3		1	W/V 28 Browns Creek Road	SB 28			POCAHONITAS	BORE
545	WV-POCA-0020			1	W// 92 Frost Road	SR 92			POCAHONITAS	ROPE
540	WW-FOCA-0021	JENLAU SA		±	*** JZ HOSCHUdu	5 52	1	v V V	- OCAHONTAS	DONL

APPENDIX S

Blasting Plan

ATLANTIC COAST PIPELINE, LLC ATLANTIC COAST PIPELINE Docket Nos. CP15-554-000 CP15-554-001

and

DOMINION TRANSMISSION, INC SUPPLY HEADER PROJECT Docket No. CP15-555-000

Blasting Plan

Updated, Rev. 2

Prepared by

July 18, 2016

TABLE OF CONTENTS

PUR GEN	PURPOSE GENERAL REQUIREMENTS				
PRE	-BLASTING REQUIREMENTS	2			
MO	L-SPECIFIC BLASTING PLANS NITORING	••••••••••••••••••			
SAF	ЕТҮ	•••••			
7.1	Protection of Aboveground and Underground Structures				
7.2	Protection of Personnel				
7.3	Lightning Hazard				
KAR	RST	•••••			
СТО					

LIST OF ACRONYMS AND ABBREVIATIONS

ACP	Atlantic Coast Pipeline
Atlantic	Atlantic Coast Pipeline, LLC
DTI	Dominion Transmission, Inc.
GPS	global positioning system
PPV	peak particle velocity
Project	Atlantic Coast Pipeline
SHP	Supply Header Project

1.0 INTRODUCTION

Atlantic Coast Pipeline, LLC (Atlantic) – a company formed by four major energy companies - Dominion Resources, Inc.; Duke Energy Corporation; Piedmont Natural Gas Co., Inc.; and AGL Resources, Inc. – proposes to construct and operate approximately 600 miles of natural gas transmission pipelines and associated aboveground facilities in West Virginia, Virginia, and North Carolina. This Project, referred to as the Atlantic Coast Pipeline (ACP), will deliver up to 1.5 million dekatherms per day of natural gas from supply areas in the Appalachian region to demand areas in Virginia and North Carolina. Atlantic has contracted with Dominion Transmission, Inc. (DTI), a subsidiary of Dominion Resources, Inc., to construct and operate the ACP on behalf of Atlantic.

In conjunction with the ACP, DTI proposes to construct and operate approximately 37.5 miles of pipeline loop and modify existing compression facilities in Pennsylvania and West Virginia. This Project, referred to as the Supply Header Project (SHP), will enable DTI to provide firm transportation service to various customers, including Atlantic.

2.0 PURPOSE

Based on an analysis of the Natural Resource Conservation Service's Soil Survey Geographic Database, approximately 26 percent (155.8 miles) of the proposed ACP and SHP pipeline routes will cross areas with bedrock at depths of less than 60 inches. More than half (81.7 miles) of this bedrock are considered paralithic (soft) and may not require blasting during construction. The remaining areas will cross soils with a lithic contact (hard bedrock) within 60 inches of the surface that may require blasting or other special construction techniques during installation of the proposed pipelines.

This *Blasting Plan* outlines the procedures and safety measures that Atlantic's and DTI's construction contractors (referred to as the Contractor below) will adhere to while conducting blasting activities required for the construction of the ACP and SHP. Before blasting, a site-specific Blasting Specification Plan, which is consistent with the provisions in this *Blasting Plan*, will be submitted by the Contractor to Atlantic or DTI for approval. Approval of a site-specific Blasting Specification Plan does not relieve the Contractor from responsibility or liability.

3.0 GENERAL REQUIREMENTS

Blasting for grade or trench excavation will be used where deemed necessary by the Contractor, and approved by an Atlantic or DTI representative, after examination of the site. To the extent practical on USFS lands, rock trenching will be accomplished using mechanical means such as rippers, rock hammers, John Henry drills, etc.

Blasting operations will be conducted by or under the direct and constant supervision of personnel legally licensed and certified to perform such activity in the jurisdiction where blasting occurs. Prior to any blasting activities, the Contractor will provide Atlantic or DTI with appropriate information documenting the experience, licenses, and permits associated with blasting personnel.

Blasting-related operations will comply with applicable Federal, State/Commonwealth, and local regulations, permit conditions, and the construction contract. These operations include: obtaining, transporting, storing, handling, loading, detonating, and disposing of blasting material; drilling; and ground-motion monitoring.

4.0 PRE-BLASTING REQUIREMENTS

Prior to the initiation of blasting operations, the Contractor will comply with the following:

- The Contractor will obtain all required Federal, State/Commonwealth, and local permits relating to the transportation, storage, handling, loading, and detonation of explosives.
- The Contractor will be responsible for the protection of existing underground facilities.
- Before performing any work on, or accessing the construction right-of-way, the Contractor will verify with an Atlantic or DTI representative that all property owners have been notified of the upcoming construction activities. The Contractor will notify all such parties at least 48 hours prior to blasting.
- The Contractor will submit to Atlantic or DTI its site-specific Blasting Specification Plan for approval prior to the execution of blasting activity.

5.0 SITE-SPECIFIC BLASTING PLANS

For each area determined to require blasting, a site-specific Blasting Specification Plan will be prepared by the Contractor. This plan will include, at a minimum, the following information:

- blaster's name, company, copy of license, and statement of qualifications;
- seismograph company, names, equipment and sensor location;
- site location (milepost and stationing), applicable alignment sheet numbers, and associated rock type and geological structure (solid, layered, or fractured);
- copies of all required Federal, State/Commonwealth, and local permits;
- methods and materials, including explosive type, product name and size, weight per unit, and density; stemming material; tamping method; blasting sequence; use of non-electrical initiation systems for all blasting operations; and magazine type and locations for storage of explosives and detonating caps;
- site dimensions, including explosive depth, distribution, and maximum charge and weight per delay; and hole depth, diameter, pattern, and number of holes per delay;
- Global positioning system (GPS) coordinates of blasting location(s), distance and orientation to nearest aboveground and underground structures, and dates and hours blasting will be conducted;

- blasting procedures for:
 - storing, handling, transporting, loading, and firing explosives;
 - prevention of misfires, fly-rock, fire prevention, noise, and stray current accidental-detonation;
 - signs, flagmen, and warning signals prior to each blast;
 - locations where the pipeline route:
 - parallels or crosses an electrical transmission corridor, cable, or pipeline;
 - parallels or crosses a highway or road;
 - approaches within 500 feet of a water well or within 150 feet of an oil and gas well; or
 - approaches within 1,000 feet of any residence, building, or occupied structure;
 - local notification;
 - inspections after each blast;
 - o disposal of waste blasting material; and
 - blasting on steep slopes.

6.0 MONITORING

During blasting operations, the Contractor will be required to monitor operations in the following manner:

- The Contractor will provide seismographic equipment to measure the peak particle velocity (PPV) of all blasts in the vertical, horizontal, and longitudinal directions.
- The Contractor will measure the PPV at any existing pipelines, domestic structures, water supply wells, oil and gas wells, electrical transmission tower footings, and other utilities within 150 feet of the blasting. If none of these structures/facilities are present, the Contractor will measure the PPV at the edge of the construction right-of-way.
- The Contractor will complete a Blasting Log Record immediately after each blast and submit a copy to an Atlantic or DTI representative upon completion of blasting activities at each blasting site.

7.0 SAFETY

7.1 Protection of Aboveground and Underground Structures

Where blasting is determined to be required, Atlantic and DTI will identify any municipal water mains proposed for crossing, and will consult the local water authority. Reports of

identified crossings will include location by milepost, owner, and status and results of contacts with the water authority.

The Contractor will exercise control to prevent damage to above ground and underground structures including pipelines, domestic structures, water supply wells, oil and gas wells, electrical transmission tower footings, measures to minimize blasting impacts on steep slopes, and other utilities. The Contractor will implement the following procedures:

- If blasting occurs within 500 feet of an identified water well, water flow performance and water quality testing will be conducted before blasting. If the water well is damaged, the well will be repaired or otherwise restored or the well owner will be compensated for confirmed damages. Atlantic and DTI will provide an alternative potable water supply to the landowner until repairs occur.
- If blasting occurs within 150 feet of any aboveground structures, the Contractor and an Atlantic or DTI representative will inspect and photograph the structures before blasting. In the event that blasting damage to the aboveground structure is confirmed, the owner will be compensated.
- The Contractor will be responsible for the ultimate resolution of all damage claims resulting from blasting. Such liability is not restricted by the 150-foot inspection requirement cited above.
- Blasting will not be allowed within 15 feet of an existing pipeline, unless specifically authorized by an Atlantic or DTI representative.
- Holes that have contained explosive material will not be re-drilled. Holes will not be drilled where danger exists of intersecting another hole containing explosive material.
- Blasting mats or padding will be used on all shots where necessary to prevent scattering of loose rock onto adjacent property and to prevent damage to nearby structures and overhead utilities.
- Blasting will not begin until occupants of nearby buildings, stores, residences, places of business, places of public gathering, and farmers have been notified by the Contractor in advance to protect personnel, property, and livestock. The Contractor will notify all such parties at least 48 hours prior to blasting.
- Blasting in or near environmentally sensitive areas, such as streams and wildlife areas, may include additional restrictions.
- When blasting on steep slopes the following measures will be taken to minimize blasting impacts.
 - A safety berm may be created at the base of each shot to minimize the shot material movement down the slope after initiation, if practical.
 - A catch berm may be created at the base of the hill to stop material from leaving the right-of way, if practical.

- Berms may be constructed on the right-of-way to direct any rolling material away for the offside boundaries.
- Shots will be initiated from the lowest elevation of the trench.
- The blaster will conduct test blasts on areas without slope with a reduction of powder factor that will fracture the material while keeping it in place. Tight digging and higher vibrations may be associated with this adjustment.
- Decking the holes may be considered to lower the pounds per delay.
- Where multiple trench shots are to be initiated, the shot material will stay in place and remain muck bound. This will hold the following shots in place.
- All blasting will be subject to the following limitations:
 - Maximum PPV of 12.0 inches per second, or the maximum PPV in accordance with State/Commonwealth or local regulations, in any of three mutually perpendicular axes measured at the lesser distance of the nearest facility or the edge of the permanent easement.
 - Maximum drill size will be 2.5 inches unless otherwise approved by an Atlantic or DTI representative.
 - Maximum quantity of explosive per delay will be governed by the recorded measurements as influenced by the test blast program or a scaled distance formula.
 - Explosive agents and ignition methods will be approved by an Atlantic or DTI representative. Ammonium nitrate/fuel oil and other free flowing explosives and blasting agents are not acceptable and will not be used.
 - Drill holes will not be left loaded overnight.
 - Approved stemming material will be used in all holes.
- The drilling pattern will be set in a manner to achieve smaller rock fragmentation (maximum 1 foot in diameter) to use as much as possible of the blasted rock as backfill material after the pipe has been padded in accordance with the specifications. The Contractor will submit the proposed drilling pattern to an Atlantic or DTI representative for approval.
- Under pipeline crossings and all other areas where drilling and blasting is required within 15 feet of existing facilities:
 - Drill holes will be reduced to a maximum of 2 inches or less in diameter.
 - The number of holes shot at one time will be limited to three unless otherwise approved by an Atlantic or DTI representative.
 - Appropriate delay between charges will be used to attain desired fragmentation.

7.2 Protection of Personnel

The Contractor will include in its procedures all Federal, State/Commonwealth, and local safety requirements for blasting. The Contractor's procedures will address, at a minimum, the following requirements:

- Blasting will be performed during daylight hours only.
- Only authorized, qualified, and experienced personnel will handle explosives.
- No explosive materials will be located where they may be exposed to flame, excessive heat, sparks, or impact. Smoking, firearms, matches, open flames, and heat- and spark-producing devices will be prohibited in or near explosive magazines or while explosives are being handled, transported, or used.
- A code of blasting signals will be established, posted in conspicuous places, and utilized during blasting operations. Employee training will be conducted on the use and implementation of the code.
- The Contractor will use every reasonable precaution including, but not limited to, visual and audible warning signals, warning signs, flag persons, and barricades to ensure personnel safety.
- Warning signs, with lettering a minimum of 4 inches in height on a contrasting background, will be erected and maintained at all approaches to the blast area.
- Flaggers will be stationed on all roadways passing within 1,000 feet of the blast area to stop all traffic during blasting operations.
- Both workers involved in the detonation and personnel not involved in the detonation will stand back at a distances determined by the person in charge from the time the blast signal is given until the "ALL CLEAR" is sounded.
- No loaded holes will be left unattended or unprotected. No explosives or blasting agent will be abandoned.
- In the case of a misfire, the blaster will provide proper safeguards for personnel until the misfire has been re-blasted or safely removed.
- The exposed areas of the blast will be matted wherever practicable. In cases where such a procedure is not deemed to be feasible, the Contractor will submit an alternative procedure for review by an Atlantic or DTI representative and the site in question will be visited and examined by the consultant before any approval is granted.
- Atlantic and DTI may employ two-way radios for communication between vehicles and office facilities. The Contractor will advise Atlantic or DTI and other pipeline contractors of any need to cease use of such equipment during blasting activities.
- All loading and blasting activity will cease and personnel in and around the blast area will retreat to a position of safety during the approach and progress of an electrical storm irrespective of the type of explosives or initiation system used.

This is a major safety precaution and will always be observed. All explosive materials, all electrical initiation systems, and all non-electric initiation systems are susceptible to premature initiation by lightning.

- Previous blast areas must be inspected to verify the absence of misfires. No drilling may commence until such inspection occurs. If a misfire occurs adjacent to a hole to be drilled, the misfire will be cleared by the blaster using reasonable techniques required for the situation prior to commencement of drilling. If a misfire occurs at some distance from the drilling area, drilling may be stopped while clearing preparations are underway. When the misfire is to be cleared by re-shooting, drilling will be shut down and personnel evacuated to a place of safety prior to detonation.
- All transportation of explosives will be in accordance with applicable Federal, State/Commonwealth, and local laws and regulations. Vehicles used to transport explosives will be in good working condition and equipped with tight wooden or non-sparking metal floor and sides. If explosives are carried in an open-bodied truck, they will be covered with a waterproof and flame-resistant tarp. Wiring will be fully insulated to prevent short-circuiting and at least two fire extinguishers will be carried. The vehicle will be plainly marked to identify its cargo so that the public may be adequately warned. Metal, flammable, or corrosive substances will not be transported in the same vehicle with explosives. There will be no smoking, and unauthorized or unnecessary personnel will not be allowed in the vehicle. Competent, qualified personnel will load and unload explosives into or from the vehicle.
- No sparking metal tools will be used to open kegs or wooden cases of explosives. Metallic slitters will be used to open fiberboard cases, provided the metallic slitter does not come in contact with the metallic fasteners of the case. There will be no smoking, no matches, no open lights, or other fire or flame nearby while handling or using explosives. Explosives will not be placed where they are subject to flame, excessive heat, sparks, or impact. Partial cases or packages of explosives will be re-closed after use. No explosives will be carried in the pockets or clothing of personnel. The wires of an electric blasting cap will not be tampered with in any way. Wires will not be uncoiled. The use of electric blasting caps will not be permitted during dust storms or near any other source of large charges of static electricity. Uncoiling of the wires or use of electric caps will not be permitted near radio-frequency transmitters. The firing circuit will be completely insulated from the ground or other conductors.
- No blast will be fired without a positive signal from the person in charge. This person will have made certain that all surplus explosives are in a safe place; all persons, vehicles, and/or boats are at a safe distance; and adequate warning has been given. Adequate warning of a blast will consist of, but not be limited to, the following:
 - o notifying nearby homeowners and local agencies, if necessary;
 - stopping vehicular and/or pedestrian traffic near the blast site; and

- signaling with an air horn, whistle, or similar device using standard warning signals.
- Only authorized and necessary personnel will be present where explosives are being handled or used.
- The condition of the hole will be checked with a wooden tamping pole prior to loading. Surplus explosives will not be stacked near working areas during loading. Detonating fans will be cut from spool before loading the balance of charge into the hole. No explosives will be forced into a bore hole past an obstruction. Loading will be done by a blaster holding a valid license or by personnel under his direct supervision.
- Fly-rock leaving the right-of-way will be collected immediately and disposed of at disposal sites approved by Atlantic or DTI. This work will not be left to the cleanup crew.

7.3 Lightning Hazard

A risk of accidental detonation caused by lightning strikes exists at any time the workplace is experiencing an electrical storm and there are loaded holes on site. If this hazard is judged to exist by an Atlantic or DTI representative, work will discontinue at all operations and workers will be moved to secure positions away from the loaded holes. Furthermore, workers will not return to the work site until the storm has passed and an Atlantic or DTI representative has indicated it is clear to return.

The Contractor will have on site an approved lightning instrument capable of measuring the degree of electrical activity as a storm approaches, and the distance to the storm front from the instrument on the right-of-way.

8.0 KARST

In accordance with Atlantic's and DTI's *Karst Monitoring and Mitigation Plan*, and in addition to the measures described above, the following procedures will be implemented in areas of karst terrain:

- Blasting will be conducted in a manner that will not compromise the structural integrity or alter the karst hydrology of known or presumed habitat for federally listed threatened and endangered species in the subterranean karst environment (e.g. Madison cave isopod).
- Excavations will be inspected for voids, openings or other tell-tale signs of solution (karst) activity.
- If rock removal intercepts an open void, channel, or cave, construction activities will cease in the vicinity of the void, channel, or cave until a remedial assessment is performed by a qualified geologist or engineer with experience in karst terrain.

- Use of explosives will be limited to low-force charges designed to transfer the explosive force only to the rock which is designated for removal (e.g., maximum charge of 2 inches per second ground acceleration).
- If the track drill used to prepare drill holes for explosive charges encounters a subsurface void larger than 6 inches within the first 10 feet of bedrock, or a group of voids totaling more than 6 inches within the first 10 feet of bedrock, then explosives will not be used until a subsurface exploration is conducted to determine if the voids have connectivity to a deeper karst structure. The subsurface exploration will be carried out with track drill probes, coring drill, electrical resistivity, or other techniques capable of resolving open voids in the underlying bedrock. If a track drill or coring rig is used, then all open holes will be grouted shut after the completion of the investigation.

9.0 STORAGE REQUIREMENTS

All explosives, blasting agents, and initiation devices will be stored in locked magazines that have been located, constructed, approved, and licensed in accordance with Federal, State/Commonwealth, and local regulations. Magazines will be dry, well ventilated, reasonably cool (painting of the exterior with a reflective color), bullet and fire resistant, and kept clean and in good condition.

Initiation devices will not be stored in the same box, container, or magazine with other explosives. Explosives, blasting agents, or initiation devices will not be stored in wet or damp areas; near oil, gasoline, or cleaning solvents; or near sources of heat radiators, steam pipes, stoves, etc. No metal or metal tools will be stored in the magazine. There will be no smoking, matches, open lights, or other fire or flame inside or within 50 feet of storage magazines or explosive materials.

Magazines will be constructed and located in accordance with Federal, State/ Commonwealth, and local regulations. Magazines will be marked in minimum 3-inch-high letters with the words "DANGER – EXPLOSIVES" prominently displayed on all sides and roof, and be kept locked at all times unless explosives are being delivered or removed by authorized personnel. Admittance will be restricted to the magazine keeper, blasting supervisor, or licensed blaster.

Accurate and current records will be kept of the explosive material inventory to ensure that oldest stocks are utilized first, satisfy regulatory requirements, and for immediate notification of any loss or theft. Magazine records will reflect the quantity of explosions removed, the amount returned, and the net quantity used at the blasting site.

When explosive materials are taken from the storage magazine, they will be kept in the original containers until used. Small quantities of explosive materials may be placed in day boxes, powder chests, or detonator boxes. Any explosive material not used at the blast site will be returned to the storage magazine and replaced in the original container as soon as possible.

APPENDIX T

Horizontal Directional Drilling (HDD) Plan

ATLANTIC COAST PIPELINE, LLC ATLANTIC COAST PIPELINE

and

DOMINION TRANSMISSION, INC. SUPPLY HEADER PROJECT

Supplemental Filing January 10, 2017

APPENDIX T

HDD Design Report

HDD Design Report, Revision 2 Atlantic Coast Pipeline Project

December 14, 2016

Prepared for

DOMINION TRANSMISSION, INC. 707 East Main Street Richmond, VA 23219

Prepared by

J.D.Hair&Associates,Inc. 2424 E 21st St, Suite 510 Tulsa, Oklahoma 74114-1723

Table of Contents

1.	INTR	DDUCTION	1
	1.1	Scope of Report	1
	1.2	Information Provided by Others	2
2.	HORI	ZONTAL DIRECTIONAL DRILLING	2
	2.1	Process Description	2
	2.2	HDD Feasibility Considerations	4
	2.3	Workspace Requirements	5
	2.4	Drilling Fluid	7
	2.5	Design Criteria	10
3	ANAL	YSIS OF INSTALLATION AND OPERATING LOADS AND STRESSES	12
	3.1	Installation Loads and Stresses	12
	3.2	HDD Pulling Load Estimates	12
	3.3	Operating Loads and Stresses	14
	3.4	Project-Specific Operating Stress Calculations	15
4	CROS	SSING-SPECIFIC SUMMARIES	15
	4.1	42-inch Interstate 79 Crossing	15
	4.2	42-inch Blue Ridge Parkway Crossing	16
	4.3	42-inch James River Crossing	16
	4.4	36-inch Roanoke River Crossing	17
	4.5	36-inch Fishing Creek Crossing	17
	4.6	36-inch Swift Creek Crossing	18
	4.7	36-inch Tar River Crossing	19
	4.8	36-inch Contentnea Creek Crossing	19
	4.9	36-inch Little River Crossing	20
	4.10	36-inch Cape Fear River Crossing	20
	4.11	20-inch Nottaway River Crossing	20
	4.12	20-inch Blackwater River Crossing	21
	4.13	20-inch Lake Prince Crossing	21
	4.14	20-inch Western Branch Reservoir Crossing	22
	4.15	20-inch Nansemond River Tributary Crossing	22
	4.16	20-inch Nansemond River Crossing	23
	4.17	20-inch Interstate 64 Crossing	23
	4.18	20-inch Route 17 Crossing	23
	4.19	20-inch Elizabeth River Crossing	24

APPENDIX

Atlantic Coast Pipeline Project HDD Design Report, Revision 2

1. Introduction

1.1 Scope of Report

This report provides background information associated with design drawings produced by J. D. Hair & Associates, Inc. (JDH&A) for nineteen obstacle crossings on Dominion's Atlantic Coast Pipeline (ACP) Project that are proposed for installation by horizontal directional drilling (HDD). The table below provides a list of the crossings that are addressed in this report along with their diameters and horizontal lengths.

Crossing	Pipe Diameter	Horizontal Length
Interstate 79	42 inches	2,869 feet
Blue Ridge Parkway	42 inches	4,639 feet
James River	42 inches	2,965 feet
Roanoke River	36 inches	1,559 feet
Fishing Creek	36 inches	1,822 feet
Swift Creek	36 inches	1,629 feet
Tar River	36 inches	1,516 feet
Contentnea Creek	36 inches	1,327 feet
Little River	36 inches	1,446 feet
Cape Fear River	36 inches	1,654 feet
Nottaway River	20 inches	1,678 feet
Blackwater River	20 inches	2,234 feet
Lake Prince	20 inches	1,952 feet
Western Branch Reservoir	20 inches	1,464 feet
Nansemond River Tributary	20 inches	3,435 feet
Nansemond River	20 inches	4,127 feet
Interstate 64	20 inches	2,039 feet
Route 17	20 inches	2,951 feet
Elizabeth River	20 inches	1,730 feet

Table 1. Proposed HDD Crossings on the ACP Project

While the primary function of this report is to present design drawings, calculations, and opinions of feasibility for each of the proposed HDD crossings on the ACP Project, general

information about the HDD construction method has also been included to provide a more thorough understanding of both project-specific considerations and standard industry practices.

1.2 Information Provided by Others

In producing the design drawings described in the previous section, JDH&A has relied upon the following information provided by others.

1.2.1 Base Survey Data

AutoCAD base files for each of the proposed crossing locations were provided by GAI Consultants, Canonsburg, Pennsylvania. These files present the results of the topographic and bathymetric surveys completed at the sites, providing grade elevations along the proposed HDD alignments and information about existing features in the vicinity of the proposed crossings.

1.2.2 Subsurface Information

Subsurface information at each of the crossing locations was provided by Geosyntec Consultants, Richmond, Virginia in crossing-specific Geotechnical Site Investigation Reports. In addition to the report text, boring logs, and laboratory testing data that were provided, Geosyntec's reports included geotechnical parameters for the soils encountered in each boring. This information was used by JDH&A to analyze the potential for drilling fluid circulation loss due to hydrofracture at each HDD crossing location.

1.2.3 Pipe Specifications and Operating Information

Line pipe specifications and maximum operating pressures applicable to the proposed crossings were provided by Ron Baker of Dominion in an email dated December 10, 2015. Installation and operating temperatures were assumed by JDH&A for the sake of analysis.

2. Horizontal Directional Drilling

2.1 Process Description

Installation of a pipeline by HDD is generally accomplished in three phases as indicated in Figure 1. First, a small diameter pilot hole is drilled along a designed directional path. Next, the pilot hole is enlarged to a diameter that will accommodate the pipeline to be installed. Finally, the pipeline is pulled into the enlarged hole.

2.1.1 Pilot Hole

Pilot hole directional control is achieved by using a non-rotating drill string with an asymmetrical leading edge. The asymmetry of the leading edge creates a steering bias while the non-rotating aspect of the drill string allows the steering bias to be held in a specific position while drilling. If a change in direction is required, the drill string is rolled so that the direction of

bias is the same as the desired change in direction. Leading edge asymmetry is typically accomplished with either a bent sub or a bent motor housing located behind the bit.

Figure 1. The HDD Process

In soft soils, drilling progress is achieved by hydraulic cutting with a jet nozzle. If hard zones are encountered, the drill string may be rotated to drill without directional control until the hard zone has been penetrated. Mechanical cutting action required for harder soils and rock is provided by

a mud motor which converts hydraulic energy from drilling fluid to mechanical energy at the drill bit. This allows for bit rotation without drill string rotation.

The path of the pilot hole is monitored during drilling using a steering tool positioned near the bit. The steering tool provides continuous readings of the inclination and azimuth at the leading edge of the drill string. These readings, in conjunction with measurements of the distance drilled, are used to calculate the horizontal and vertical coordinates of the steering tool relative to the initial entry point on the surface. The path of the pilot hole can also be determined with a surface monitoring system that induces an artificial magnetic field using a wire placed on the surface. Measurements of this magnetic field's properties by instruments in the steering tool allow the position of the steering tool to be determined using triangulation. This provides data that can be used to correct downhole survey inaccuracy that results from inconsistencies in the earth's magnetic field.

2.1.2 Prereaming

Enlarging the pilot hole is accomplished using prereaming passes prior to pipe installation. Reaming tools generally consist of a circular array of cutters and drilling fluid jets and are often custom made by contractors for a particular hole size or type of soil. These tools are attached to the drill string and rotated and drawn along the pilot hole. Drill pipe is added behind the tools as they progress along the drilled path to ensure that a string of pipe is always maintained in the drilled hole.

2.1.3 Pullback

Pipe installation is accomplished by attaching a pipeline pull section behind a reaming assembly at the exit point, then pulling the reaming assembly and pull section back to the drilling rig. This is undertaken after completion of prereaming or, for smaller diameter lines in soft soils, directly after completion of the pilot hole. A swivel is utilized to connect the pull section to the reaming assembly to minimize torsion transmitted to the pipe. The pull section is supported using some combination of roller stands and pipe handling equipment to minimize tension and prevent damage to the pipe.

2.2 HDD Feasibility Considerations

The technical feasibility of an HDD installation can be determined by comparing it to past installations in three basic parameters: drilled length, pipe diameter, and subsurface conditions. These three parameters work in combination to limit what can be achieved at a given location. With pipe diameters ranging from 20 to 42 inches and horizontal drilled lengths ranging from 1,327 to 4,639 feet, all of the potential HDD installations on the ACP Project are within current HDD industry capabilities in terms of both length and diameter. However, while length and diameter are key components in an HDD installation's feasibility, technical feasibility is primarily limited by subsurface conditions. The material characteristic that most frequently prevents successful HDD installations is large grain content in the form of cobbles and boulders. Other conditions that can negatively impact HDD feasibility include poor rock quality, excessive rock strength and hardness, solution cavities in bedrock, and artesian groundwater pressure.

Soils consisting principally of coarse-grained material present a serious restriction on the feasibility of HDD. Coarse material cannot be readily fluidized by the drilling fluid and is too unstable to be cut and removed in a drilling fluid stream as is the case with a crossing in competent rock. A boulder or cluster of cobbles will remain in the drilled path and present an obstruction to a bit, reamer, or pipeline. Such obstructions must be mechanically displaced during hole enlargement. Displacement may be radially outward into voids formed by the entrainment of finer grained material. However, naturally dense, high gravel percentage soils contain little entrainable material, therefore voids sufficient to permit passage by larger diameter reamers or pipe may not develop. Coarse material may also migrate to low spots along the drilled path forming impenetrable blocks. An HDD installation through poor quality (extensively fractured or jointed) rock can present the same problems as coarse granular deposits. Cutting a hole through such materials may cause the overlying rock to fall in creating obstructions during subsequent passes.

Exceptionally strong and hard rock will hamper all phases of an HDD project. Experience has shown that competent rock with unconfined compressive strengths as high as 50,000 psi can be negotiated with today's technology. However, entry of such materials at depth can be problematic as the drill string may tend to deflect rather than penetrate. Extremely slow penetration rates in hard rock and frequent stoppages to replace worn bits and reamers can result in extended construction durations and corresponding increases in construction cost. Excessive rock hardness can also lead to tool failures downhole resulting from premature wear and drill pipe failures due to excessive torque.

Penetration of solution cavities found in karstic limestone formations can allow the drill string to deflect substantially, especially during pilot hole drilling when the drill string is in compression. Continued rotation of a drill string subjected to excessive deflection can result in failure of the drill pipe due to low-cycle fatigue. Penetration of an artesian aquifer on an HDD installation can result in a sustained inflow of groundwater and fine soils into the drilled hole. This can cause several serious problems including drilling fluid storage and disposal issues, degradation of the drilling fluid, deterioration of the hole, and stuck pipe or downhole tools.

2.3 Workspace Requirements

2.3.1 Rig Side

A typical large horizontal drilling spread can be moved onto a site in seven to ten tractor-trailer loads. A workspace of 250 feet by 200 feet is adequate for most operations. The locations of the principal components of the spread (rig ramp, drill pipe, and control trailer) are fixed by the entry point. The rig ramp must be positioned in line with the drilled segment and typically less than 25 feet back from the entry point. The control cab and drill pipe must be positioned adjacent to the rig.

The horizontal drilling rig workspace must be cleared and graded level. Equipment is typically supported on the ground surface, although timber mats may be used where soft ground is encountered. A typical horizontal drilling rig site plan is shown in Figure 2. Where possible, we

recommend obtaining workspaces of similar dimensions to accommodate HDD rig side operations on the ACP Project.

Figure 2. Typical Horizontal Drilling Rig Site Plan

2.3.2 Pipe Side

Pull section fabrication is accomplished using the same construction methods used to lay a pipeline; therefore, similar workspace is required. The drilled segment exit point controls the location of pull section fabrication workspace. Space must be available to allow the pipe to be fed into the drilled hole. It is preferable to have workspace aligned with the drilled segment extending back from the exit point the length of the pull section plus approximately 200 feet. This will allow the pull section to be prefabricated in one continuous length prior to installation. If space is not available, the pull section may be fabricated in two or more sections which are welded together during installation. It should be noted that delays associated with joining multiple pipe strings during pullback can increase the risk of the pipe becoming stuck in the hole.

Workspace for pull section fabrication should generally be around 100 feet wide; similar to what is required for conventional pipeline construction. Additional temporary workspace should be provided in the immediate vicinity of the exit point to facilitate personnel and equipment supporting drilling operations. Pull section workspace must be cleared but need not be graded level. Equipment is typically supported on the ground surface. Timber mats may be used where soft ground is encountered. A typical pull section fabrication site plan is shown in Figure 3. Where possible, we recommend obtaining workspaces of similar dimensions to accommodate HDD pipe side operations on the ACP Project.

Figure 3. Typical Pull Section Fabrication Site Plan

2.4 Drilling Fluid

2.4.1 Introduction

Drilling fluid is used in all phases of the HDD process and typically consists of fresh water obtained at the crossing location, high-yield bentonite, and excavated soil or rock cuttings that accumulate as HDD operations progress. Typical HDD drilling fluids are composed of less than 2% high yield bentonite by volume. Drilling fluid serves several critical functions in HDD pipeline installation including hydraulic excavation of the soil along the drilled path, transmission of hydraulic power to a downhole motor that turns the bit, removal of soil or rock cuttings from the hole, stabilization of the hole, and reduction of friction between the pipe and the wall of the hole.

2.4.2 Inadvertent Returns

HDD involves the subsurface discharge of drilling fluid. Once discharged downhole, drilling fluid is uncontrolled and will flow in the path of least resistance. This can result in dispersal into the surrounding soils or discharge to the surface at some random location, which may not be a critical problem in an undeveloped location. However, in an urban environment or a high profile recreational area, inadvertent returns can be a major problem. In addition to the obvious public nuisance, drilling fluid flow can buckle streets or wash out embankments.

Drilling parameters may be adjusted to maximize drilling fluid circulation and minimize the risk of inadvertent returns. However, the possibility of lost circulation and inadvertent returns cannot be eliminated. Contingency plans addressing possible remedial action should be made in advance of construction and regulatory bodies should be informed.

Inadvertent returns are more likely to occur in less permeable soils with existing flow paths. Examples are slickensided clay or fractured rock structures. Coarse grained, permeable soils exhibit a tendency to absorb circulation losses. Manmade features, such as exploratory boreholes or piles, may also serve as conduits to the surface for drilling fluid. An example of an inadvertent drilling fluid return is shown in Figure 4.

Figure 4. Inadvertent Drilling Fluid Return

Research projects have been conducted in an attempt to identify the mechanisms that cause inadvertent returns and develop analytical methods for use in predicting their occurrence. Efforts have centered on predicting the point at which hydraulic fracture of the native soils will occur. These programs have met with limited success in providing a reliable prediction method. Engineering judgment and experience must be applied in utilizing the hydrofracture model to predict the occurrence, or nonoccurrence, of inadvertent returns.

2.4.3 Assessment of the Potential for Hydraulic Fracture

Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil mass, resulting in deformation, cracking, and fracturing. The fractures may then serve as flow conduits for drilling fluid allowing the fluid to escape into the formation and possibly up to the

ground surface. Drilling fluid that makes its way to the ground surface is known as an inadvertent drilling fluid return or, more commonly, a "frac-out."

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases.¹ Drilling fluid flows in the path of least resistance. Ideally, the path of least resistance is through the annulus of the drilled hole and back to the fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

The risk of hydrofracture can be determined by comparing the confining capacity of the subsurface (formation limit pressure) to the annular pressure necessary to conduct HDD operations. If the anticipated drilling fluid pressure in the annulus exceeds the estimated formation limit pressure, there is a potential that inadvertent drilling fluid returns will occur as a result of hydrofracture.

The formation limit pressures for the proposed HDD crossings on the ACP Project were calculated using the "Delft Method" as described in an Army Corps of Engineers publication titled *Recommended Guidelines for Installation of Pipelines beneath Levees using Horizontal Directional Drilling.*² The Delft Method assumes uniform soil conditions in the soil column above the point on the drilled path that is being analyzed and requires engineering judgement with respect to the selection of the geotechnical parameters that are used in the associated equations. As noted previously, the geotechnical parameters used in our analysis were provided by Geosyntec Consultants. The estimated minimum annular pressure necessary for HDD pilot hole operations was calculated using the Bingham Plastic Model, which is described in Chapter 4 of the Society of Petroleum Engineers' *Applied Drilling Engineering.*³

The formation limit pressures were calculated over the length of each proposed HDD crossing on the ACP Project and compared to the estimated annular pressures necessary for HDD operations. A graphical summary of the results for each crossing is provided in the Appendix. In reviewing this information, it should be noted that a factor of safety has not been applied to the formation limit pressure. As a result, the point at which the estimated annular pressure exceeds the formation limit pressure is the theoretical point at which plastic yielding and cracking reaches the ground surface resulting in an inadvertent drilling fluid return.

Table 2 presents a summary of the hydrofracture risk at each crossing location based on the calculation method described above.

¹ Bennett, R.D. and K. Wallin. "Step by Step Evaluation of Hydrofracture Risks for HDD Projects." Presentation, North American Society for Trenchless Technology, NoDig Conference, Grapevine, TX, 2008.

² Kimberlie Staheli et al, *Recommended Guidelines for Installation of Pipelines beneath Levees using Horizontal Directional Drilling* (prepared for U.S. Army Corps of Engineers, April 1998).

³ Applied Drilling Engineering, Society of Petroleum Engineers, Richardson, Texas, A. T. Bourgoyne, Jr. [et al], 1991

Crossing	Risk of Hydrofracture	Notes
Interstate 79	Unknown	No geotechnical information available
Blue Ridge Parkway	Low	
James River	Low	
Roanoke River	Low	
Fishing Creek	Low	
Swift Creek	Low	
Tar River	Low	
Contentnea Creek	Unknown	No geotechnical information available
Little River	Low	
Cape Fear River	Low	
Nottaway River	Low	
Blackwater River	Moderate	Predicted annular pressure approaches formation limit pressure beneath river
Lake Prince	Low	
Western Branch Reservoir	Low-Moderate	Safety factor less than 2 below lake
Nansemond River Tributary	High	Predicted annular pressure exceeds formation limit pressure beneath river
Nansemond River	Moderate-High	Predicted annular pressure exceeds formation limit pressure at eastern water's edge
Interstate 64	Low	
Route 17	Moderate-High	Predicted annular pressure exceeds formation limit pressure beneath pond
Elizabeth River	Low	

Table	2.	Summary	of	Hydrofracture	Risk by	Crossing
-------	----	---------	----	---------------	---------	----------

2.5 Design Criteria

2.5.1 Drilled Path Centerline

Drilled path designs for segments to be installed by HDD are defined by the following six parameters: 1) entry point, 2) exit point, 3) entry angle, 4) exit angle, 5) P.I. elevation, and 6) radius of curvature. The relationship of these parameters to each other is illustrated in Figure 5.

HDD Design Report, Revision 2 December 14, 2016

Figure 5. HDD Design Terminology

2.5.2 Entry and Exit Points

The entry and exit points are the endpoints of the designed drilled segment on the ground surface. The drilling rig is positioned at the entry point and the pipeline is pulled into the drilled hole from the exit point. The relative locations of the entry and exit points, and consequently the direction of pilot hole drilling and pullback, should be established by the site's geotechnical and topographical conditions. The following criteria were considered when selecting entry and exit point locations on the ACP Project: 1) steering precision and drilling effectiveness are greater near the drilling rig; 2) drilling fluid returns to the rig are enhanced if the entry point is lower than the exit point; 3) pullback operations are enhanced if there is sufficient workspace in line with the drilled path to allow the pull section to be fabricated in one continuous string. It is also important to recognize that the position of the drilling rig may be changed during construction to facilitate HDD operations and that a dual rig scenario may be employed during both the pilot hole and prereaming if deemed beneficial. In a dual rig scenario, drilling rigs are positioned at both ends of the drilled segment and work in tandem.

2.5.3 Entry and Exit Angles

Entry angles for drilled segments on the ACP Project were set at 10 degrees with the horizontal while exit angles were held between 8 and 10 degrees to facilitate breakover support during pullback. These angles are consistent with HDD industry standards.⁴

⁴ Manual of Practice No. 108, Pipeline Design for Installation by Horizontal Directional Drilling, Second Edition (Reston, VA: American Society of Civil Engineers, 2014), 14.

2.5.4 P.I. Elevation

The P.I. elevation defines the depth of cover that the HDD installation will provide. Typically, HDD crossings are designed to provide no less than 25 feet of cover beneath critical obstacles.⁵ This aids in reducing inadvertent drilling fluid returns and provides a margin for error with regard to downhole survey calculations. Due to the sensitive nature of the HDD segments on the ACP Project, the drilled profiles were designed to provide a minimum vertical clearance of 40 feet where possible in order to further reduce the risk of inadvertent drilling fluid returns. At some of the crossing locations, this clearance was either reduced or increased slightly due to site-specific concerns.

2.5.5 Radius of Curvature

The design radius of curvature for the HDD segments on the ACP Project was set at 2,000 feet for the 20-inch crossings, 3,600 feet for the 36-inch crossings, and 4,200 feet for the 42-inch crossings. These values are consistent with the HDD industry standard design radius of 1,200 times the nominal outside diameter of the pipe to be installed.⁶ This relationship has been developed over a period of years in the HDD industry and is based on experience with constructability as opposed to any theoretical analysis.

3 Analysis of Installation and Operating Loads and Stresses

3.1 Installation Loads and Stresses

During HDD installation, a pipeline segment is subjected to tension, bending, and external pressure as it is pulled through a prereamed hole. The stresses in the pipe and its potential for failure are a result of the interaction of these loads.^{7,8} In order to determine if a given pipe specification is adequate, HDD installation loads must first be estimated so that the stresses resulting from these loads can be calculated. A thorough design process requires examination of the stresses that result from each individual installation loading condition as well as an examination of the combined stresses that result from the interaction of these loads.

3.2 HDD Pulling Load Estimates

Calculation of the approximate tensile load required to install a pipeline by HDD is relatively complicated due to the fact that the geometry of the drilled path must be considered along with the properties of the pipe being installed and the subsurface conditions. Assumptions and simplifications are required. A method to accomplish this is presented in *Installation of Pipelines*

⁵ Manual of Practice No. 108, 16.

⁶ Manual of Practice No. 108, 16.

⁷ Fowler, J.R. and C.G. Langner. "Performance Limits for Deepwater Pipelines." Presentation, OTC 6757, 23rd Annual Offshore Technology Conference, Houston, TX, May 6-9, 1991.

⁸ Loh, J.T. "A Unified Design Procedure for Tubular Members." Presentation, OTC 6310, 22nd Annual Offshore Technology Conference, Houston, TX, May 7-10, 1990.

Dominion Transmission, Inc. Atlantic Coast Pipeline Project

by Horizontal Directional Drilling, An Engineering Design Guide, published by the Pipeline Research Council International (PRCI).⁹

The PRCI Method involves modeling the drilled path as a series of segments to define its shape and properties during installation. The individual loads acting on each segment are then resolved to determine a resultant tensile load for each segment. The estimated force required to install the entire pull section in the reamed hole is equal to the sum of the tensile loads acting on all of the defined segments. When utilizing the PRCI Method, pulling loads are affected by numerous variables, many of which are dependent upon site-specific conditions and individual contractor practices. These include prereaming diameter, hole stability, removal of cuttings, soil and rock properties, drilling fluid properties, and the effectiveness of buoyancy control measures.¹⁰ It is also important to keep in mind that the PRCI Method considers pulling tension, pipe bending, and external pressure. It does not consider point loads that may result from subsurface conditions such as a rock ledge or boulder. Indeed, we know of no way to analyze potential point loads that may develop due to subsurface conditions. Although this type of damage is relatively rare, several cases have been observed in the last few years where pipelines suffered damage in the form of dents or pipe deformation due to point loads encountered during HDD installation.

Pulling load calculations for each of the proposed HDD crossings on the ACP Project were based on an assumed worst-case installation model in which the pilot hole is drilled up to 40 feet longer and 30 feet deeper than the designed path with a radius of curvature equal to two-thirds of the design radius. A conservative drilling fluid density of 12 pounds per gallon was assumed for the sake of analysis. For the 36 inch and 42-inch crossings, pulling load calculations were performed based on two scenarios: 1.) the pull sections being full of water for buoyancy control purposes, which is typical on large diameter crossings to reduce pulling loads, and 2.) the pull sections being installed empty to provide conservative results with regard to installation stresses. For the 20-inch crossings, only an empty pipe scenario was considered since buoyancy control measures are not typically employed for steel pipe less than 30 inches in diameter.

Our installation stress calculations indicated no violations of applicable stress criteria. As a result, it is our opinion that the proposed line pipe specifications are suitable for installation by HDD. This conclusion is based on three assumptions: 1) that the actual drilled paths will not exceed the lengths or depths of the worst-case models analyzed; 2) that the HDD contractor will not employ any improper construction procedures; and 3) that problematic subsurface conditions will not be encountered.

Table 3 provides a summary of the estimated pulling loads for each crossing based on the scenarios described above. Copies of our complete installation stress calculation spreadsheets are provided in the Appendix.

⁹ Installation of Pipelines by Horizontal Directional Drilling, An Engineering Design Guide (Arlington, VA: Pipeline Research Council International, Inc., 2008), 26-36.

¹⁰ Manual of Practice No. 108, 22.

Crossing	Estimated Pulling Load with Buoyancy Control	Estimated Pulling Load without Buoyancy Control
Interstate 79	199,089 lbs.	430,756 lbs.
Blue Ridge Parkway	286,742 lbs.	979,838 lbs.
James River	187,844 lbs.	459,458 lbs.
Roanoke River	78,434 lbs.	287,363 lbs.
Fishing Creek	92,546 lbs.	323,050 lbs.
Swift Creek	82,857 lbs.	289,047 lbs.
Tar River	76,371 lbs.	277,573 lbs.
Contentnea Creek	66,579 lbs.	249,090 lbs.
Little River	67,335 lbs.	265,977 lbs.
Cape Fear River	83,086 lbs.	305,472 lbs.
Nottaway River	N/A	107,890 lbs.
Blackwater River	N/A	138,721 lbs.
Lake Prince	N/A	122,924 lbs.
Western Branch Reservoir	N/A	93,043 lbs.
Nansemond River Tributary	N/A	207,053 lbs.
Nansemond River	N/A	240,879 lbs.
Interstate 64	N/A	126,012 lbs.
Route 17	N/A	175,267 lbs.
Elizabeth River	N/A	109,466 lbs.

Table 3. Estimated HDD Pulling Loads

3.3 Operating Loads and Stresses

As with a pipeline installed by conventional methods, a pipeline installed by HDD will be subjected to internal pressure, thermal expansion, and external pressure during normal operation. A welded pipeline installed by HDD will also be subjected to elastic bending. The operating loads imposed on a pipeline installed by either of these methods are addressed in Chapter 5 of *Installation of Pipelines by Horizontal Directional Drilling, An Engineering Design Guide.*¹¹

With one exception, the operating stresses in a pipeline installed by HDD are not materially different from those experienced by pipelines installed by cut and cover techniques. As a result, past procedures for calculating and limiting stresses can be applied. However, unlike a cut and cover installation in which the pipe is bent to conform to the ditch, a pipeline installed by HDD

¹¹ Installation of Pipelines by Horizontal Directional Drilling, An Engineering Design Guide, 24-26.

will contain elastic bends. Bending stresses imposed by the HDD installation process should be checked in combination with other operating stresses to evaluate if acceptable limits are exceeded. Other longitudinal and hoop stresses that should be considered will result from internal pressure and thermal expansion or contraction.

3.4 Project-Specific Operating Stress Calculations

The results of the operating stress calculations for each proposed pipe diameter are provided in the Appendix. Calculations were performed based on both the design radius and the specified minimum radius and, like the installation stress calculations, did not indicate any violations of applicable stress criteria. Specific information used in the calculations is provided below.

20-inch Crossings

Outside Diameter	20.00 inches
Wall Thickness	0.411 inches
Grade	API 5L X-70
Maximum Operating Pressure	1,440 psig
Minimum Installation Temperature	55 °F
Maximum Operating Temperature	125 °F

36-inch Crossings

36.00 inches
0.741 inches
API 5L X-70
1,440 psig
55 °F
125 °F

42-inch Crossings

Outside Diameter	42.00 inches
Wall Thickness	0.864 inches
Grade	API 5L X-70
Maximum Operating Pressure	1,440 psig
Minimum Installation Temperature	55 °F
Maximum Operating Temperature	125 °F

4 Crossing-Specific Summaries

4.1 42-inch Interstate 79 Crossing

The proposed HDD crossing of Interstate 79 has a horizontal drilled length of 2,869 feet and an outside diameter of 42 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

To date, we have not been provided with a geotechnical report for this crossing. However, based on subsurface information obtained on a previous project located roughly 3 miles to the northwest, we anticipate that the Interstate 79 crossing will be placed in bedrock consisting primarily of shale and/or limestone. At this point, we have no reason to believe that the rock at the Interstate 79 crossing would be adverse. Therefore, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Interstate 79 and that the crossing can be completed successfully.

4.2 42-inch Blue Ridge Parkway Crossing

The proposed HDD crossing of the Blue Ridge Parkway has a horizontal drilled length of 4,639 feet and an outside diameter of 42 inches. This combination of length and diameter falls within the limits of current HDD industry capabilities. Pipe diameters up to 42 inches have been installed over lengths exceeding 7,000 feet and HDD crossings involving 42-inch diameter pipe over lengths on the order of 5,000 feet are fairly common.

The geotechnical site investigation report produced by Geosyntec presents the results of a geologic desktop study, two exploratory borings, and a geophysical survey conducted at the Blue Ridge Parkway crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter surficial alluvium containing gravel, cobbles and boulders in a sandy silt to clay matrix underlain by granodiorite bedrock of the Pedlar Formation and metamorphosed Basalt of the Catoctin Formation. Upon completion of the boring on the southeast end of the crossing in which bedrock was not encountered, there was a concern that the adverse alluvium may be so extensive that the feasibility of the proposed HDD installation would be questionable. However, the results of the boring on the northwest end of the crossing and the subsequent geophysical survey indicate that the adverse alluvial soils are not as extensive as initially feared. Based on that information, it is believed that bedrock can be reached within 90 to 130 feet of both HDD endpoints which will allow for large diameter surface casings to be set from the endpoints to competent rock. The ability to set surface casings through the adverse soils significantly reduces the risk of the proposed HDD installation.

The proposed HDD crossing will be complicated by the challenging topography at the site, which is likely to require some amount of excavation at both ends of the crossing to create level work areas for the HDD equipment. Also, since the product pipe will be laid downhill from the proposed exit point, it is anticipated that several cranes will be needed to handle the pipe and support it as it is lifted during pullback to be aligned with the reamed hole. However, the need for excavations and cranes does not cause any concern with regard to technical feasibility. Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Blue Ridge Parkway and that the crossing can be completed successfully.

4.3 42-inch James River Crossing

The proposed HDD crossing of the James River has a horizontal drilled length of 2,965 feet and an outside diameter of 42 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of one exploratory boring conducted at the James River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter less than 20 feet of overburden soils (lean clay overlying silty gravel), underlain by weak shale and moderate to strong, excellent quality sandstone . Aside from the relatively thin layer of gravel overlying bedrock, these conditions are generally favorable for HDD installation. However, it should be noted that it would be advisable to obtain at least one additional boring on either end of the crossing to allow for a more comprehensive assessment of the subsurface conditions.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the James River and that the crossing can be completed successfully.

4.4 36-inch Roanoke River Crossing

The proposed HDD crossing of the Roanoke River has a horizontal drilled length of 1,559 feet and an outside diameter of 36 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Roanoke River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter primarily clay, sand, and silt, with a slight potential for partially weathered rock or competent bedrock at the low point of the crossing. Aside from possibly encountering bedrock at depth, which could be problematic, these are favorable conditions for HDD installation. If rock is encountered during the pilot hole, Dominion may wish to consider increasing the "up" tolerance (which currently allows being up to 5 feet above the designed profile) so that bedrock can be avoided.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Roanoke River and that the crossing can be completed successfully.

4.5 36-inch Fishing Creek Crossing

The proposed HDD crossing of Fishing Creek has a horizontal drilled length of 1,822 feet and an outside diameter of 36-inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Fishing Creek crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter alluvial overburden consisting of silty/clayey sand and fat clay with gravel, underlain by 20 to 35 feet of decomposed bedrock generally described as very dense silty and clayey sand, underlain by granite bedrock. On the south end of the crossing, the granite is generally competent and strong, with unconfined compressive strengths ranging from around 15,000 to 30,000 psi. On the north
end of the crossing, the granite is described as completely to moderately weathered, with low recovery, low RQDs, and compressive strengths ranging from around 4,000 to 10,000 psi.

The HDD crossing of Fishing Creek has been designed with entry and exit tangents extending to bedrock, and we do not expect the alluvium or the decomposed bedrock (very dense sand) to be problematic. The fact that the granite on the south end of the crossing is competent and strong while the granite on the north end is highly weathered could present challenges during HDD operations, but we believe those challenges will not present insurmountable problems for skilled contractors. It should be noted that the relatively high strength of the competent bedrock will result in low production rates for pilot hole drilling and prereaming, which will increase both the duration and cost of HDD operations in comparison to crossings placed through alluvial soils or soft rock. Nonetheless, HDD installations of similar diameters have been completed through comparable subsurface conditions. Based on these considerations, it is our opinion that knowledgeable HDD crossing of Fishing Creek and that the crossing can be completed successfully.

4.6 36-inch Swift Creek Crossing

The proposed HDD crossing of Swift Creek has a horizontal drilled length of 1,629 feet and an outside diameter of 36-inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Swift Creek crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter around 50 feet of overburden on the west end of the crossing and 15 feet of overburden on the east end consisting primarily of silty/clayey sand with some gravel. The overburden soils on the west end of the crossing are underlain by amphibolite and granite bedrock while the overburden on the east end is underlain almost exclusively by granite. In general, the granite is competent, strong, and hard with compressive strengths approaching 40,000 psi and Mohs hardness values ranging from 4.5 to 9 while the amphibolite is of lower strength and quality.

As currently designed, the entry tangent on the west end of the crossing does not extend to bedrock, which is generally preferable for entry of the bit into rock and also in the event that installation of surface casing is necessary. As result, the HDD contractor may choose to drill the pilot hole from east to west, eventually moving the rig to the west end of the crossing for pullback. It may also be worth considering extending the entry tangent to bedrock, but we haven't done that as it would require increasing the length of the crossing. The high strength and hardness of the granite at this location will result in low production rates and relatively high construction cost in comparison to crossings placed through alluvial soils or soft rock. However, HDD installations of similar diameters have been completed through comparable subsurface conditions. Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Swift Creek and that the crossing can be completed successfully.

4.7 36-inch Tar River Crossing

The proposed HDD crossing of the Tar River has a horizontal drilled length of 1,516 feet and an outside diameter of 36-inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Tar River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter 25 to 35 feet of overburden consisting primarily of clayey and silty sand with gravel underlain by phyllite bedrock on the south end of the crossing and rhyolite, breccia, and phyllite bedrock on the north end. On the south end of the crossing, the upper 60 feet or so of the phyllite bedrock is moderately to completely weathered and soft with extremely low compressive strengths, while at greater depths (corresponding roughly to the lowest point of the designed crossing) the hardness and compressive strength of the bedrock increases significantly. On the north end of the crossing, the bedrock properties are more uniform, having mostly fair to excellent RQD's and compressive strengths generally ranging from 3,000 to 7,000 psi.

Like the Swift Creek crossing, the entry tangent on the north end of the Tar River crossing does not extend to bedrock. Considering that the rhyolite bedrock at the rock/soil interface beneath the north bank is substantially softer and weaker than the granite encountered at Swift Creek, we anticipate that skilled contractors will not have much difficulty entering bedrock. However, if problems are encountered either in the overburden soils or at the rock/soil interface, the entry angle could be reduced to 8 degrees so that a surface casing could be set to bedrock. While placement through bedrock at this location will certainly result in slower production rates and higher costs than crossings placed through alluvial soils, production rates on the Tar River crossing should be significantly higher than in the granite expected at the Fishing Creek and Swift Creek crossings. Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Tar River and that the crossing can be completed successfully.

4.8 36-inch Contentnea Creek Crossing

The proposed HDD crossing of Contentnea Creek has a horizontal drilled length of 1,327 feet and an outside diameter of 36-inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

To date, we have not been provided with a geotechnical report for this crossing. Based on the subsurface conditions at the Tar River crossing to the north and the Little River crossing to the south, we anticipate that the Contentnea Creek crossing will be placed in bedrock. However, since the bedrock at those crossing locations differs substantially, we're not sure what to expect. Nonetheless, we have no reason to believe that the rock at the Contentnea Creek location would be any more adverse than any of the other proposed HDD crossing locations. Therefore, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Contentnea Creek and that the crossing can be completed successfully.

4.9 36-inch Little River Crossing

The proposed HDD crossing of the Little River has a horizontal drilled length of 1,446 feet and an outside diameter of 36-inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Little River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter 15 to 25 feet of silty sand and sandy clay with gravel overlying siltstone bedrock. The quality of the siltstone varies significantly and the unconfined compressive strengths generally range from 3,000 to 15,000 psi with an 18,672 psi value at the bottom of boring LR B-2. In general, the rock is soft with typical Mohs hardness values of 2.5 to 3.5.

Despite the fact that some of the compressive strengths obtained in Boring LR B-2 are relatively high, sedimentary rock such as siltstone is generally a favorable medium for installation of an HDD crossing. Placement through siltstone will result in slower production rates and higher costs than crossings placed through alluvial soils, but production rates on the Little River crossing should be significantly higher than in the granite expected at Fishing Creek and Swift Creek. Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Little River and that the crossing can be completed successfully.

4.10 36-inch Cape Fear River Crossing

The proposed HDD crossing of the Cape Fear River has a horizontal drilled length of 1,654 feet and an outside diameter of 36-inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Cape Fear River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter primarily lean clay and clayey sand, which are favorable conditions for HDD installation.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Cape Fear River and that the crossing can be completed successfully.

4.11 20-inch Nottaway River Crossing

The proposed HDD crossing of the Nottaway River has a horizontal drilled length of 1,678 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Nottaway River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter mostly sand and

clayey sand over its entire length, which are favorable conditions for HDD installation. The only notable coarse material in the borings was a possible boulder at a depth of 48 feet on the west side of the crossing and a sample containing 15.3 percent gravel at a depth of 23 to 25 feet on the east side of the crossing. Otherwise only trace amounts of gravel were encountered.

While subsurface conditions that include boulders can be problematic for an HDD installation, it is reassuring that there was only one possible boulder encountered by the borings and that the geotechnical report provided no other indication that boulders are expected. As a result, we do not believe that boulders are a significant concern at this location. Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Nottaway River and that the crossing can be completed successfully.

4.12 20-inch Blackwater River Crossing

The proposed HDD crossing of the Blackwater River has a horizontal drilled length of 2,234 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Blackwater River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter surficial sand and silt underlain by fat clay, which are favorable conditions for HDD installation. While it should be noted that the calculations we have completed for this crossing indicate a moderate risk of inadvertent drilling fluid returns as a result of hydrofracture, that risk does not necessarily impact the technical feasibility of the proposed crossing.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Blackwater River and that the crossing can be completed successfully.

4.13 20-inch Lake Prince Crossing

The proposed HDD crossing of Lake Prince has a horizontal drilled length of 1,952 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Lake Prince crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter sand and clayey sand, which are favorable conditions for HDD installation.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Lake Prince and that the crossing can be completed successfully.

4.14 20-inch Western Branch Reservoir Crossing

The proposed HDD crossing of the Western Branch Reservoir has a horizontal drilled length of 1,464 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Western Branch Reservoir crossing site. In general, the boring logs indicate that the proposed HDD crossing is anticipated to encounter mainly sand and silt with some clay beneath both banks, underlain by clay directly beneath the river. These conditions are favorable for HDD installation.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Western Branch Reservoir and that the crossing can be completed successfully.

4.15 20-inch Nansemond River Tributary Crossing

The proposed HDD crossing of the Nansemond River Tributary has a horizontal drilled length of 3,435 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Nansemond River Tributary crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter loose/soft sand, silt, and clay, which are favorable conditions for HDD installation. While it should be noted that the calculations we have completed for this crossing indicate a high risk of inadvertent drilling fluids in the mud flats and waterway as a result of hydrofracture, that risk does not necessarily impact the technical feasibility of the proposed crossing. In an attempt to reduce the potential for inadvertent returns at this location, we lowered the design elevation as much as possible without placing it below the termination depths of the borings. However, there is a still a significant risk of inadvertent returns at this location. It may be possible to mitigate the risk of inadvertent returns at this location by drilling a portion of the pilot hole from the western end of the crossing.

The proposed HDD crossing will be complicated by the fact that there is not sufficient space available for the pipeline pull section to be fabricated and staged in one complete length. As a result, it is envisioned that two tie-in welds will be required during pullback. Stoppages to make tie-in welds will increase the risk of getting stuck during pullback, especially considering the loose/soft nature of the anticipated soils. However, we don't believe this will ultimately prevent a competent HDD contractor from installing the crossing. Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Nansemond River Tributary and that the crossing can be completed successfully.

4.16 20-inch Nansemond River Crossing

The proposed HDD crossing of the Nansemond River has a horizontal drilled length of 4,127 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Nansemond River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter loose/soft sand, silt, and clay, which are favorable conditions for HDD installation. While it should be noted that the calculations we have completed for this crossing indicate a moderate to high risk of inadvertent drilling fluids on the eastern edge of the mud flats as a result of hydrofracture, that risk does not necessarily impact the technical feasibility of the proposed crossing. We investigated lowering the design elevation by 26 feet in order to reduce the potential for inadvertent returns, but based on our calculations that change didn't help. It may be possible to mitigate the risk of inadvertent returns at this location by drilling a portion of the pilot hole from the eastern end of the crossing.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Nansemond River and that the crossing can be completed successfully.

4.17 20-inch Interstate 64 Crossing

The proposed HDD crossing of Interstate 64 has a horizontal drilled length of 2,039 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of two exploratory borings conducted at the Interstate 64 crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter surficial clay overlying sand with silt and silty sand, which are favorable conditions for HDD installation.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Interstate 64 and that the crossing can be completed successfully.

4.18 20-inch Route 17 Crossing

The proposed HDD crossing of Route 17 has a horizontal drilled length of 2,951 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of three exploratory borings conducted at the Route 17 crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter alternating layers of clay and sand overlying a layer of medium dense sand though which the majority of the

crossing will be placed. These conditions are favorable for HDD installation. While it should be noted that the calculations we have completed for this crossing indicate a moderate to high risk of inadvertent drilling fluid returns as a result of hydrofracture in the pond to the west of the exit point, that risk does not necessarily impact the technical feasibility of the proposed crossing. It may be possible to mitigate the risk of inadvertent returns in the pond by drilling a portion of the pilot hole from the eastern end of the crossing.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of Route 17 and that the crossing can be completed successfully.

4.19 20-inch Elizabeth River Crossing

The proposed HDD crossing of the Elizabeth River has a horizontal drilled length of 1,730 feet and an outside diameter of 20 inches. This combination of length and diameter falls well within the limits of current HDD industry capabilities.

The geotechnical site investigation report produced by Geosyntec presents the results of three exploratory borings conducted at the Elizabeth River crossing site. In general, the geotechnical investigation found that the proposed HDD crossing is anticipated to encounter primarily silty sand and clayey sand, which are favorable conditions for HDD installation. The borings also encountered occasional wood fragments, gravel, and weathered rock fragments.

It should be noted that the depths of the sheet piling along the eastern water's edge and the wood pilings in the river are not known. While the crossing has been designed at a depth that we anticipate will clear the existing pilings, there is a risk that the pilings could be encountered by the contractor's downhole tools during HDD operations. If so, the crossing may need to be redesigned and installed at a greater depth.

Based on these considerations, it is our opinion that knowledgeable HDD contractors will submit fixed price, lump sum bids to install Dominion's proposed HDD crossing of the Elizabeth River and that the crossing can be completed successfully.

APPENDIX

Operating Stress

Supporting Information

- Operating stress analysis, 20-inch crossings (1 page)
- Operating stress analysis, 36-inch crossings (1 page)
- Operating stress analysis, 42-inch crossings (1 page)

Operating Stress Analysis

PROJECT: Dominion Atlantic Coast Pipeline 20" Crossings Installation and operating temperatures assumed

Pipe Properties		
	Design Radius	Specified Min
	(2.000')	Radius (1.350')
	(<u>2</u> ,000 jp	20,000 in
Wall Thickness -	20.000 III	20.000 in
Specified Minimum Vield Strength =	70.000 psi	70.000 psi
Young's Modulus =	2 9E+07 psi	2 9E+07 psi
Moment of Inertia =	1213.22 in ⁴	1213.22 in ⁴
Pipe Face Surface Area =	25.29 in ²	25.29 in ²
Diameter to Wall Thickness Ratio, D/t =	49	49
Poisson's Ratio =	0.3	0.3
Coefficient of Thermal Expansion =	6.5E-06 in/in/°F	6.5E-06 in/in/°F
Pipe Weight in Air =	85.99 lb/ft	85.99 lb/ft
Pipe Interior Volume =	2.01 ft ³ /ft	2.01 ft ³ /ft
Pipe Exterior Volume =	2.18 ft ³ /ft	2.18 ft ³ /ft
Operating Parameters		
Maximum Allowable Operating Pressure =	1,440 psig	1,440 psig
Radius of Curvature =	2,000 ft	1,350 ft
Installation Temperature =	55 °F	55 °F
Operating Temperature =	125 °F	125 °F
Groundwater Table Head =	0 ft	0 ft
Operating Stress Check	Scenario 1	Scenario 2
Hoop Stress =	35,036 psi	35,036 psi
% SMYS =	50%	50%
Longitudinal Stress from Internal Pressure =	10,511 psi	10,511 psi
% SMYS =	15%	15%
Longitudinal Strang from Temperature Change	12 105 poi	12 105 mai
	-13,195 psi	-13,195 psi
// SW15 =	19%	19%
Longitudinal Stress from Bending =	12.083 psi	17 901 nsi
SMYS =	17%	26%
	,0	
Net Longitudinal Stress (taking bending in tension) =	9,399 psi	15,217 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	13% ok	22% ok
Net Longitudinal Stress (taking bending in compression) =	-14,767 psi	-20,585 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	21% ok	29% ok
Combined Stress (NLS w/bending in tension) - Max. Shear Stress Theory =	25,637 psi	19,819 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	37% ok	28% ok
	10.004	55.000 v.
Combined Stress (NLS w/bending in compression) - Max. Shear Stress Theory =	49,804 psi	55,622 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	71% OK	79% OK
Combined Stress (NILS w/bending in tension) - Max. Distortion Energy Theory -	21 410 pci	20.420 pci
Limited to 90% of SMYS by ASME R31 8 (2010) R31 4 (2012)	45% ok	43% ok
	40 /0 UK	40/0 UK
Combined Stress (NLS w/bending in compression) - Max Distortion Energy Theory -	44 306 psi	48 709 nsi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	63% ok	70% ok

Operating Stress Analysis

PROJECT: Dominion Atlantic Coast Pipeline 36" Crossings Installation and operating temperatures assumed

Pipe Properties		
	Design Radius	Specified Min.
	(3,600')	Radius (2,400')
Pipe Outside Diameter =	36.000 in	36.000 in
Wall Thickness =	0.741 in	0.741 in
Specified Minimum Yield Strength =	70,000 psi	70,000 psi
Young's Modulus =	2.9E+07 psi	2.9E+07 psi
Moment of Inertia =	12755.22 in ⁴	12755.22 in ⁴
Pipe Face Surface Area =	82.08 in ²	82.08 in ²
Diameter to Wall Thickness Ratio, D/t =	49	49
Poisson's Ratio =	0.3	0.3
Coefficient of Thermal Expansion =	6.5E-06 in/in/°F	6.5E-06 in/in/°F
Pipe Weight in Air =	279.04 lb/ft	279.04 lb/ft
Pipe Interior Volume =	6.50 ft ³ /ft	6.50 ft ³ /ft
Pipe Exterior Volume =	7.07 ft ³ /ft	7.07 ft ³ /ft
Operating Parameters		
Maximum Allowable Operating Pressure =	1,440 psig	1,440 psig
Radius of Curvature =	3,600 ft	2,400 ft
Installation Temperature =	55 °F	55 °F
Operating Temperature =	125 °F	125 °F
Groundwater Table Head =	0 ft	0 ft
Operating Stress Check	Scenario 1	Scenario 2
Hoop Stress =	34.980 psi	34.980 psi
% SMYS =	50%	50%
Longitudinal Stress from Internal Pressure =	10,494 psi	10,494 psi
% SMYS =	15%	15%
Longitudinal Stress from Temperature Change =	-13,195 psi	-13,195 psi
% SMYS =	19%	19%
Longitudinal Stress from Bending =	12,083 psi	18,125 psi
% SMYS =	17%	26%
Net Longitudinal Stress (taking bending in tension) =	9,382 psi	15,424 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	13% ok	22% ok
Net Longitudinal Stress (taking bending in compression) =	-14,784 psi	-20,826 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	21% ok	30% ok
Combined Stress (NLS w/bending in tension) - Max. Shear Stress Theory =	25,597 psi	19,556 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	37% ok	28% ok
Combined Stress (NLS w/bending in compression) - Max. Shear Stress Theory =	49,764 psi	55,806 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	71% ok	80% ok
Combined Stress (NLS w/bending in tension) - Max. Distortion Energy Theory =	31,360 psi	30,364 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	45% ok	43% ok
Combined Stress (NLS w/bending in compression) - Max. Distortion Energy Theory =	44,264 psi	48,845 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	63% ok	70% ok

Operating Stress Analysis

PROJECT: Dominion Atlantic Coast Pipeline 42" Crossings Installation and operating temperatures assumed

Pipe Properties		
	Design Radius	Specified Min.
	(4.200')	Radius (2.800')
Pine Outside Diameter =	42.000 in	42.000 in
Wall Thickness -	0.864 in	42.000 III
Specified Minimum Yield Strength =	70.000 psi	70.000 psi
Young's Modulus =	2.9E+07.psi	2.9E+07.psi
Moment of Inertia =	23617.82 in ⁴	23617.82 in ⁴
Pipe Face Surface Area =	111.66 in ²	111.66 in ²
Diameter to Wall Thickness Ratio, D/t =	49	49
Poisson's Ratio =	0.3	0.3
Coefficient of Thermal Expansion =	6.5E-06 in/in/°F	6.5E-06 in/in/°F
Pipe Weight in Air =	379.58 lb/ft	379.58 lb/ft
Pipe Interior Volume =	8.85 ft ³ /ft	8.85 ft ³ /ft
Pipe Exterior Volume =	9.62 ft ³ /ft	9.62 ft ³ /ft
Operating Parameters		
Maximum Allowable Operating Pressure =	1,440 psig	1,440 psig
Radius of Curvature =	4,200 ft	2,800 ft
Installation Temperature =	55 °F	55 °F
Operating Temperature =	125 °F	125 °F
Groundwater Table Head =	0 ft	0 ft
Operating Stress Check	Scenario 1	Scenario 2
Hoop Stress =	35.000 psi	35.000 psi
% SMYS =	50%	50%
Longitudinal Stress from Internal Pressure =	10,500 psi	10,500 psi
% SMYS =	15%	15%
Longitudinal Stress from Temperature Change =	-13,195 psi	-13,195 psi
% SMYS =	19%	19%
Longitudinal Stress from Bending =	12,083 psi	18,125 psi
% SMYS =	17%	26%
	0.000 ·	45.400
Net Longitudinal Stress (taking bending in tension) =	9,388 psi	15,430 psi
Limited to 90% of SM15 by ASME B31.8 (2010) B31.4 (2012) =	13% OK	22% OK
Not Longitudinal Stross (taking bonding in compression) -	14 779 poi	20,820 poi
Limited to 90% of SMVS by ASME B31.8 (2010) B31.4 (2012) –	-14,776 psi	-20,020 psi
	2170 UK	30% UK
Combined Stress (NLS w/bending in tension) - Max, Shear Stress Theory -	25.612 psi	19.570 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	37% ok	28% ok
		2070 01
Combined Stress (NLS w/bending in compression) - Max. Shear Stress Theory =	49.778 psi	55.820 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	71% ok	80% ok
Combined Stress (NLS w/bending in tension) - Max. Distortion Energy Theory =	31,378 psi	30,381 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	45% ok	43% ok
Combined Stress (NLS w/bending in compression) - Max. Distortion Energy Theory =	44,279 psi	48,859 psi
Limited to 90% of SMYS by ASME B31.8 (2010) B31.4 (2012) =	63% ok	70% ok

Interstate 79

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)

Interstate 79 P0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	LK	В
Crossing : 42" Interstate 79 Crossing	Date :	11/29/2	2016
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger
and 30' deeper than design with a 2,400' radius) with 12 ppg r	mud and BC		
Line Pipe Properties			
Pipe Outside Diameter =	42.000	in	
Wall Thickness =	0.864	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	23617.82	in ⁴	
Pipe Face Surface Area =	111.66	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	379.58	lb/ft	
Pipe Interior Volume =	8.85	ft ³ /ft	
Pipe Exterior Volume =	9.62	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction =	0.30		
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	551.97	lb/ft	
Displaced Mud Weight =	863.59	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,508	psi	No
For D/t > $3,000,000/SMYS$ and <= $300, F_b$ =	45,636	psi	Yes
Allowable Bending Stress, F _b =	45,636	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,800	psi	
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,800	psi	Yes
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,444	psi	No
For $F_{he} > 1.6^*SMYS$ and <= 6.2*SMYS, F_{hc} =	12,016	psi	No
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,800	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi	

Interstate 79 P0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Interstate 79 P0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 42.000 in PIpe Weight, W = 379.6 lb/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d =$ psitBallast Weight / ft Pipe, $W_b =$ 552.0lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 863.6lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	Summary of Pulling Load Calculations
Segment Length, L = 1316.4 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 379.6$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 148,451$ lb	
Fluidic Drag = $12 \pi D L C_d = 0$ lb	Pludic drag is calculated as zero unless entire segment is submerged in drilling fluid. Please reference Step 2, Drilled Path Input
Axial Segment Weight = $W_e L \sin\theta = -69,545$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Tangent = 78,906 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T =93,483IbRadius of Curvature, R =2,400ftEffective Weight, $W_e = W + W_b - W_m =$ 68.0Ib/ft
h = R [1 - cos(α/2)] = 5.85 ft	$j = [(E I) / T]^{1/2} = 2,707$
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 3.8E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 151.54
U = (12 L) / j = 1.49	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 29,129 lb
Bending Frictional Drag = $2 \mu N = 17,478$ lb	
Fluidic Drag = 12π D L C _d = 13,265 lb	
Axial Segment Weight = $W_e L \sin\theta = -1,589$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Sag Bend =29,154IbTotal Pulling Load =108,060Ib	
Bottom Tangent	- Summary of Pulling Load Calculations
Segment Length, L = 495.8 ft	Effective Weight, $W_e = W + W_b - W_m = 68.0$ lb/ft
Frictional Drag = $W_e L \mu =$ 10,109 lb	
Fluidic Drag = $12 \pi D L C_d$ = 19,625 lb	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent = 29,734 Ib Total Pulling Load = 137,794 Ib	

Interstate 79 P0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend - S	summary of Pulling	Load Calculations		
Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radii Effective Weight, V	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	155,414 lb 2,400 ft 68.0 lb/ft	
h	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	2,099	
$Y = [18 (L)^2] - [(j)$	² (1 - cosh(U/2) ⁻¹] =	1.2E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	382.49	
	U = (12 L) / j =	2.39	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	26,963 lb	
Bending Friction	onal Drag = 2 μ N =	16,178 lb				
Fluidic Dr	rag = 12 π D L C _d =	16,581 lb				
Axial Segment W	eight = $W_e L \sin \theta =$	2,481 lb				
Pulling Load on	Entry Sag Bend =	35,240 lb				
То	tal Pulling Load =	173,034 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
S	egment Length, L = Entry Angle, θ =	364.6 ft 10.0 °	Effective Weight, W	$V_{e} = W + W_{b} - W_{m} =$	68.0 lb/ft	
Frictional Dr Fluidic Di	ag = W _e L μ cosθ =[rag = 12 π D L C _d =[7,321 lb 14,432 lb				
Axial Segment W Pulling Load or To	eight = W _e L sinθ = n Entry Tangent = tal Pulling Load =	4,303 lb 26,055 lb 199,089 lb				
		Summary of Cal	culated Stress vs.	Allowable Stress		
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
Entry Point	1,783 ok	0 ok	0 ok	0.03 ok	0.00 ok	
PC	1,550 ok	0 ok	292 ok	0.02 ok	0.00 ok	
PT	1,550 ok 1,234 ok	21,146 ok 21,146 ok	292 ok 461 ok	0.49 ok 0.48 ok	0.17 ok 0.18 ok	
	1,234 ok	0 ok	461 ok	0.02 ok	0.01 ok	
	968 ok	0 ok	461 ok	0.02 ok	0.00 ok	
PC	000 -1-	01.140	404	0.40	0.47	
	968 ok 707 ok	21,146 ok 21,146 ok	461 ok 353 ok	0.48 ok 0.47 ok	0.17 OK 0.16 OK	
PT						
Exit Point	707 ok 0 ok	0 ok 0 ok	353 ok 0 ok	0.01 ok 0.00 ok	0.00 ok 0.00 ok	
	-				-	
1						

Interstate 79 P0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information					
Project : D	Dominion Atlantic Coast Pipeline	User :	LKI	В		
Crossing : 4	2" Interstate 79 Crossing	Date :	11/29/2	2016		
Comments · Ir	nstallation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger		
a	nd 30' deeper than design with a 2,400' radius) with 12 ppg r	nud and no E	BC			
	Line Pipe Properties					
	Pipe Outside Diameter =	42.000	in			
	Wall Thickness =	0.864	in			
	Specified Minimum Yield Strength =	70,000	psi			
	Young's Modulus =	2.9E+07	psi			
	Moment of Inertia =	23617.82	in ⁴			
	Pipe Face Surface Area =	111.66	in ²			
	Diameter to Wall Thickness Ratio, D/t =	49				
	Poisson's Ratio =	0.3				
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F			
	Pipe Weight in Air =	379.58	lb/ft			
	Pipe Interior Volume =	8.85	ft ³ /ft			
	Pipe Exterior Volume =	9.62	ft ³ /ft			
	HDD Installation Properties					
	Drilling Mud Density =	12.0	ppg			
	=	89.8	lb/ft ³			
	Ballast Density =	62.4	lb/ft ³			
	Coefficient of Soil Friction =	0.30				
	Fluid Drag Coefficient =					
	Ballast Weight =	551.97	lb/ft			
	Displaced Mud Weight =	863.59	lb/ft			
	Installation Stress Limits					
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi			
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No		
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,508	psi	No		
	For D/t > 3,000,000/SMYS and <= 300, F _b =	45,636	psi	Yes		
	Allowable Bending Stress, F _b =	45,636	psi			
	Elastic Hoop Buckling Stress, F _{he} =	10,800	psi			
	For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,800	psi	Yes		
	For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,444	psi	No		
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	12,016	psi	No		
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No		
	Critical Hoop Buckling Stress, F _{hc} =	10,800	psi			
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi			

Interstate 79 P0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Interstate 79 P0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile des	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 42.000 in PIpe Weight, W = 379.6 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d = $ 0.025psiBallast Weight / ft Pipe, $W_b = $ 552.0lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 863.6lb(If Submerged)Above Ground Load = 0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 1316.4 ft Exit Angle, $\theta = 8.0$ °	Effective Weight, $W_e = W + W_b - W_m = 379.6$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 148,451$ lb	
Fluidic Drag = $12 \pi D L C_d = 0$ Ib	Fluidic drag is calculated as zero unless entire segment is submerged in drilling fluid. Please reference Step 2, Drilled Path Input
Axial Segment Weight = $W_e L \sin\theta = -69,545$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Tangent = 78,906 Ib	
Exit Sag Bend - S	Summary of Pulling Load Calculations
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = 135,407 lb Radius of Curvature, R = 2,400 ft Effective Weight, $W_e = W + W_b - W_m = -484.0$ lb/ft
h = R [1 - $\cos(\alpha/2)$] = 5.85 ft	$j = [(E I) / T]^{1/2} = 2,249$
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 5.1E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 203.12
U = (12 L) / j = 1.79	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 147,372 lb
Bending Frictional Drag = $2 \mu N = 88,423$ lb	
Fluidic Drag = 12 π D L C _d = 13,265 lb	
Axial Segment Weight = $W_e L \sin\theta = 11,314$ lb	
Pulling Load on Exit Sag Bend = 113,002 Ib Total Pulling Load = 191,908 Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 495.8 ft	Effective Weight, $W_e = W + W_b - W_m = -484.0$ lb/ft
Frictional Drag = $W_e L \mu = 71,990$ lb	
Fluidic Drag = 12 π D L C _d = 19,625 lb	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent = 91,615 Ib Total Pulling Load = 283,523 Ib	

Interstate 79 P0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Segment Length, L =418.9ftAverage Tension, T =339,178IbSegment Angle with Horizontal, θ =10.0°Radius of Curvature, R =2,400ftDeflection Angle, α =5.0°Effective Weight, W _e = W + W _b - W _m =-484.0lb/ft						
h = R [1 - cos($\alpha/2$)] = 9.13 ft j = [(E I) / T] ^{1/2} = 1,421						
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 1.8E + 06 \qquad X = (3 L) - [(j / 2) \tanh(U/2)] = 586.29$						
U = (12 L) / j = 3.54 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 187,331 lb						
Bending Frictional Drag = 2 μ N = 112,399 Ib						
Fluidic Drag = 12 π D L C _d = 16,581 Ib						
Axial Segment Weight = $W_e L \sin\theta = -17,670$ lb Negative value indicates axial weight applied in direction of installation						
Pulling Load on Entry Sag Bend = 111,310 Ib Total Pulling Load = 394,833 Ib						
Entry Tangent - Summary of Pulling Load Calculations						
Segment Length, L = 364.6 ft Effective Weight, W _e = W + W _b - W _m = -484.0 lb/ft Entry Angle, θ = 10.0 °						
Frictional Drag = $W_e L \mu \cos\theta = 52,134$ lb						
Finitic Drag = 12 m D L C _d = 14,432 IB Axial Segment Weight = $W_e L \sin\theta = -30,642$ Ib Negative value indicates axial weight applied in direction of installation Pulling L and on Entry Tangent = 35,923 Ib						
Total Pulling Load = $430,756$ lb						
Summary of Calculated Stress vs. Allowable Stress						
Tensile Stress Bending Stress External Hoop Stress Combined Tensile & Bending Combined Tensile Bending						
Entry Point 3,858 ok 0 ok 0 ok 0.06 ok 0.00 ok 3,536 ok 0 ok 959 ok 0.06 ok 0.03 ok						
3,536 ok 21,146 ok 959 ok 0.52 ok 0.24 ok 2,539 ok 21,146 ok 1512 ok 0.50 ok 0.26 ok						
2,539 ok 0 ok 1512 ok 0.04 ok 0.05 ok 1,719 ok 0 ok 1512 ok 0.03 ok 0.05 ok						
1,719 ok 21,146 ok 1512 ok 0.49 ok 0.25 ok 707 ok 21,146 ok 1158 ok 0.47 ok 0.21 ok PT						
707 ok 0 ok 1158 ok 0.01 ok 0.03 ok Exit Point 0 ok 0 ok 0 ok 0.00 ok 0.00 ok						

Blue Ridge Parkway

Supporting Information

- Plan & profile drawing presenting HDD crossing design (2 pages, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- RED ARE BASED ON A GENERAL GEOLOGIC PROFILE INCLUDED IN THE GEOTECHNICAL SITE INVESTIGATION REPORT AS FIGURE 4.
- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

2.

З,

- 3. ELEVATION: UP TO 5 FEET ABOVE AND 30 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 15 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 2,800 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

MDDIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

			,			
		VAY			REVISION	0
JECT		E PARKW G			i LABEL	RKWAY 1
E PRO		E RIDGE DRILLIN			DRAWING	BR PAF
ELINE	OFILE	HE BLUI TONAL I		VIRGINIA	LE LE	OWN FOR
ST PIP	AND PR	NG OF T DIRECT		COUNTY,	VED SCA	P P S S S S S S S S S S S S S S S S S S
COA	PLAN	SROSSI ONTAL		& NELSON	D APPRC	ISC
NTIC		ELINE C HORIZO		COUNTY 8	CHECKEI	DMP
ATLA		ACH PIPI BY		AUGUSTA	DATE	05/19/16
		42-IN		LOCATION:	DRAWN	KMN
						APP.
						CHK'D
						BY C
						REVISION DESCRIPTION
						DATE
						NO.
	leffrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Suite 510 Tulsa, Oklahoma 74114
	Do	PRO Omii	JEC nic	n tr ⊃n∖	o. 15	08
		мп	LE	POST	r.	
			1	1	_	0

DRILLED PATH ENTRY/EXIT PDINT

GEDTECHNICAL LEGEND

SPLIT SPOON SAMPLE

CONTAINING GRAVEL

CORE BARREL SAMPLE

- UCS 6, 250 UNCONFINED COMPRESSIVE STRENGTH (PSI)
- ---- MOHS HARDNESS 53_6
- -ROCK QUALITY DESIGNATION (PERCENT)

- 1. GEDTECHNICAL DATA PROVIDED BY GEDSYNTEC CONSULTANTS, RICHMOND, VIRGINIA. REFER TO THE GEDTECHNICAL SITE INVESTIGATION REPORT FOR MORE DETAILED SUBSURFACE INFORMATION.
- 2. THE LETTER "N" TO THE LEFT OF A SPLIT SPOON SAMPLE INDICATES THAT NO GRAVEL WAS DESERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS DESERVED BUT NO GRADATION TEST WAS PERFORMED.
- 3. THE GEDIECHNICAL DATA IS DNLY DESCRIPTIVE DF THE LDCATIDNS ACTUALLY SAMPLED. EXTENSION DF THIS DATA DUTSIDE DF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DDES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR WHOT USE UND SUM EXPORTATION DUPLIES ON DUPLOT MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 4. STRATIFICATION LINES AND SUBSURFACE MATERIAL DESCRIPTIONS SHOWN ON THIS DRAWING HAVE BEEN SIMPLIFIED FOR PRESENTATION PURPOSES.
- 5. THE ANTICIPATED SUBSURFACE CONDITIONS SHOWN IN RED ARE BASED ON A GENERAL GEOLOGIC PROFILE INCLUDED IN THE GEDTECHNICAL SITE INVESTIGATION REPORT AS FIGURE 4.
- 1. TOPOGRAPHIC SURVEY DATA PROVIDED BY GAI CONSULTANTS, CANONSBURG, PENNSYLVANIA.
- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

1. DRILLED PATH STATIONING IS IN FEET BY HURIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.

2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

3

ATLANTIC COAST PIPELINE PROJECT	ENTEDVIEVIT BRAEILES NATTER I SCALE	ENTRY/EXIT PROFILES - NATURAL SCALE 42-INCH PIPELINE CROSSING OF THE BLUE RIDGE PARKWAY BY HORIZONTAL DIRECTIONAL DRILLING				DRAWN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	KMN 05/19/16 DMP JSP BHOWN FOR BR PARKWAY 2 0
							CHK'D APP.
							BY
							REVISION DESCRIPTION
							ATE
							D. D.
		Jettrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	I	00	^{рко} mi	DJE ni ILE	CT N ON POS	ю. \15 т	08
			D	1	. 03	4	-0

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	KM	N
Crossing : 42" Blue Ridge Parkway Crossing	Date :	2/9/20	016
Comments Installation stress analysis based on worst-case drilled path p	er tolerances	; (40' loi	nger
and 30' deeper than design with a 2,800' radius) with 12 ppg	mud with BC		
Line Pipe Properties			
Pipe Outside Diameter =	42.000	in	
Wall Thickness =	0.864	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	23617.82	in ⁴	
Pipe Face Surface Area =	111.66	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	379.58	lb/ft	
Pipe Interior Volume =	8.85	ft ³ /ft	
Pipe Exterior Volume =	9.62	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction =	0.30		
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	551.97	lb/ft	
Displaced Mud Weight =	863.59	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,508	psi	No
For D/t > 3,000,000/SMYS and <= 300, F_{b} =	45,636	psi	Yes
Allowable Bending Stress, F _b =	45,636	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,800	psi	
For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,800	psi	Yes
For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,444	psi	No
For $F_{he} > 1.6*SMYS$ and <= 6.2*SMYS, F_{hc} =	12,016	psi	No
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,800	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi	

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Exit Point

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties				
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.			
Pipe Diameter, D = 42.000 in PIpe Weight, W = 379.6 Ib/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = 0.025$ psitBallast Weight / ft Pipe, $W_b = 552.0$ lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = 863.6$ lb(If Submerged)Above Ground Load = 0lb			
Exit Tangent - S	Summary of Pulling Load Calculations			
Segment Length, L = 693.1 ft Exit Angle, $\theta = 8.0$ °	Effective Weight, $W_e = W + W_b - W_m = 68.0$ lb/ft			
Frictional Drag = $W_e L \mu \cos\theta = 13,994$ lb				
Fluidic Drag = 12π D L C _d = 27,436 lb				
Axial Segment Weight = $W_e L \sin\theta = -6,556$ lb	Negative value indicates axial weight applied in direction of installation			
Pulling Load on Exit Tangent = 34,874 Ib				
Exit Sag Bend -	Summary of Pulling Load Calculations			
Segment Length, L = 391.0 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T =45,691lbRadius of Curvature, R =2,800ftEffective Weight, $W_e = W + W_b - W_m =$ 68.0lb/ft			
h = R [1 - $\cos(\alpha/2)$] = 6.82 ft	j = [(E I) / T] ^{1/2} = 3,872			
Y = $[18 (L)^2] - [(j)^2 (1 - \cosh(U/2)^{-1}] = 3.7E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 125.16			
U = (12 L) / j = 1.21	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 13,353 lb			
Bending Frictional Drag = 2 μ N = 8,012 Ib				
Fluidic Drag = $12 \pi D L C_d = 15,476$ lb				
Axial Segment Weight = $W_e L \sin\theta = -1,853$ lb	Negative value indicates axial weight applied in direction of installation			
Pulling Load on Exit Sag Bend =21,634IbTotal Pulling Load =56,508Ib				
Bottom Tangent - Summary of Pulling Load Calculations				
Segment Length, L = 2607.7 ft	Effective Weight, $W_e = W + W_b - W_m = 68.0$ lb/ft			
Frictional Drag = W _e L μ = 53,170 lb				
Fluidic Drag = 12π D L C _d = 103,225 lb				
Axial Segment Weight = $W_e L \sin\theta = 0$ lb				
Pulling Load on Bottom Tangent =156,395IbTotal Pulling Load =212,902Ib				

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Entry Sag Bend - Summary of Pulling Load Calculations					
Segment Angle v De	egment Length, L = with Horizontal, θ = eflection Angle, α =	488.7 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	231,351 lb 2,800 ft 68.0 lb/ft	
h	= R [1 - cos(α/2)] =	10.65 ft		$j = [(E I) / T]^{1/2} =$	1,721	
$Y = [18 (L)^2] - [(j)^2]$	² (1 - cosh(U/2) ⁻¹] =	2.4E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	660.90	
	U = (12 L) / j =	3.41	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	24,431 lb	
Bending Friction	onal Drag = 2 μ N =	14,659 lb				
Fluidic Dr	ag = 12 π D L C _d =	19,344 lb				
Axial Segment We	eight = $W_e L \sin \theta =$	2,895 lb				
Pulling Load on I Tot	Entry Sag Bend = al Pulling Load =	36,898 lb 249,800 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
Se	egment Length, L = Entry Angle, θ =	516.9 ft 10.0 °	Effective Weight, W	$V_{e} = W + W_{b} - W_{m} =$	68.0 lb/ft	
Frictional Dra	Frictional Drag = $W_e L \mu \cos\theta = 10,379$ lb					
Fluidic Drag = 12π D L C _d = 20,462 Ib Axial Segment Weight = W _e L sin θ = 6,101 Ib						
Pulling Load on Entry Tangent = 36,942 Ib Total Pulling Load = 286,742 Ib						
		Summary of Cal	culated Stress vs.	Allowable Stress		
r						
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
Entry Point	2,568 ok	0 ok	0 ok	0.04 ok	0.00 ok	
PC	2,237 ok	0 ok	375 ok	0.04 ok	0.01 ok	
-	2,237 ok 1,907 ok	18,125 ok 18,125 ok	375 ok 571 ok	0.43 ok 0.43 ok	0.14 ok 0.15 ok	
PT	1,907 ok	0 ok	571 ok	0.03 ok	0.01 ok	
PC	506 ok	0 ok	571 ok	0.01 ok	0.01 ok	
PT	506 ok 312 ok	18,125 ok 18,125 ok	571 ok 445 ok	0.41 ok 0.40 ok	0.13 ok 0.12 ok	
Exit Point	312 ok 0 ok	0 ok 0 ok	445 ok 0 ok	0.00 ok 0.00 ok	0.00 ok 0.00 ok	

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information				
Project :	Project : Dominion Atlantic Coast Pipeline				
Crossing :	Crossing : 42" Blue Ridge Parkway Crossing				
Comments ·	Commonte Installation stress analysis based on worst-case drilled path per				
Comments :	and 30' deeper than design with a 2,800' radius) with 12 ppg r	nud and no E	3C		
	Line Pipe Properties				
	Pipe Outside Diameter =	42.000	in		
	Wall Thickness =	0.864	in		
	Specified Minimum Yield Strength =	70,000	psi		
	Young's Modulus =				
	Moment of Inertia =	23617.82	in ⁴		
	Pipe Face Surface Area =	111.66	in ²		
	Diameter to Wall Thickness Ratio, D/t =	49			
	Poisson's Ratio =	0.3			
	Coefficient of Thermal Expansion =				
	Pipe Weight in Air =	379.58	lb/ft		
Pipe Interior Volume =			ft ³ /ft		
Pipe Exterior Volume =			ft ³ /ft		
	HDD Installation Properties				
	Drilling Mud Density =	12.0	ppg		
	=				
Ballast Density =			lb/ft ³		
Coefficient of Soil Friction =					
Fluid Drag Coefficient =			psi		
Ballast Weight =			lb/ft		
Displaced Mud Weight =			lb/ft		
	Installation Stress Limits				
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi		
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No	
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,508	psi	No	
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,636	psi	Yes	
	Allowable Bending Stress, F _b =	45,636	psi		
	Elastic Hoop Buckling Stress, F_{he} =	10,800	psi		
	For $F_{he} \leq 0.55$ *SMYS, Critical Hoop Buckling Stress, F_{hc} =	10,800	psi	Yes	
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =			psi	No	
For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =			psi	No	
For F _{he} > 6.2*SMYS, F _{hc} =			psi	No	
	Critical Hoop Buckling Stress, F _{hc} =	10,800	psi		
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi		

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties					
Based on profile design entered in 'Step 2, Drilled Path Input'.					
Pipe Diameter, D = 42.000 in PIpe Weight, W = 379.6 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 552.0lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 863.6lb(If Submerged)Above Ground Load =0lb				
Exit Tangent - S	ummary of Pulling Load Calculations				
Segment Length, L = 693.1 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -484.0$ lb/ft				
Frictional Drag = $W_e L \mu \cos\theta = 99,660$ lb					
Fluidic Drag = 12π D L C _d = 27,436 Ib					
Axial Segment Weight = $W_e L \sin \theta = 46,688$ Ib					
Pulling Load on Exit Tangent = 173,784 Ib					
Exit Sag Bend - S	Summary of Pulling Load Calculations				
Segment Length, L =391.0ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = 236,820 Ib Radius of Curvature, R = 2,800 ft Effective Weight, $W_e = W + W_b - W_m = -484.0$ Ib/ft				
h = R [1 - cos(α/2)] =ft	j = [(E I) / T] ^{1/2} = 1,701				
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 1.2E+06$	X = (3 L) - [(j / 2) tanh(U/2)] = 423.90				
U = (12 L) / j =2.76	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 162,328 lb				
Bending Frictional Drag = $2 \mu N = 97,397$ Ib					
Fluidic Drag = 12 π D L C _d = 15,476 lb					
Axial Segment Weight = $W_e L \sin \theta = 13,200$ lb					
Pulling Load on Exit Sag Bend = 126,072 Ib Total Pulling Load = 299,856 Ib					
Bottom Tangent -	Summary of Pulling Load Calculations				
Segment Length, L = 2607.7 ft	Effective Weight, $W_e = W + W_b - W_m = $ Ib/ft				
Frictional Drag = W _e L µ = 378,650 Ib					
Fluidic Drag = $12 \pi D L C_d = 103,225$ lb					
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib					
Pulling Load on Bottom Tangent = 481,875 Ib Total Pulling Load = 781,730 Ib					

Blue Ridge Parkway R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations						
Segment Length Segment Angle with Horizontal Deflection Angle	h, L = $\frac{488.7}{10.0}$ ft l, θ = $\frac{10.0}{0}$ ° e, α = $\frac{5.0}{0}$ °	A Radii Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	855,318 lb 2,800 ft -484.0 lb/ft		
h = R [1 - cos(α/	/2)] = 10.65 ft		$j = [(E I) / T]^{1/2} =$	895		
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2))]$?) ⁻¹] = 3.6E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	1019.92		
U = (12 L)	U = (12 L) / j = 6.55 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 247,408 lb					
Bending Frictional Drag = 2 _F	µ N = 148,445 lb					
Fluidic Drag = $12 \pi D L$	C _d = 19,344 lb					
Axial Segment Weight = $W_e L$ si	inθ =20,615 Ib	Negative value indicat	es axial weight applied	in direction of installation		
Pulling Load on Entry Sag Ber Total Pulling Loa	nd = 147,174 lb ad = 928,905 lb					
	Entry Tangent - S	Summary of Pulling	Load Calculations			
Segment Length, L = 516.9 ft Effective Weight, W _e = W + W _b - W _m = -484.0 lb/ft Entry Angle, θ = 10.0 °						
Frictional Drag = $W_e L \mu cc$	osθ = 73,917 lb					
Fluidic Drag = $12 \pi D L C_d = 20,462$ lb						
Axial Segment Weight = W _e L si	inθ =43,445 Ib	Negative value indicat	es axial weight applied	in direction of installation		
Pulling Load on Entry Tangent = 50,934 Ib Total Pulling Load = 979,838 Ib						
	Summary of Ca	Iculated Stress vs.	Allowable Stress			
Tensile Stre	ess Bending Stress	External Hoop Stress	Combined Tensile & Bending	Bending & Ext. Hoop		
Entry Point 8,775	ok 0 ok	0 ok	0.14 ok	0.02 ok		
PC	ok 0 ok	1230 ok	0.13 ok	0.06 ok		
8,319 7,001	ok 18,125 ok ok 18,125 ok	1230 ok 1874 ok	0.53 ok 0.51 ok	0.29 ok 0.32 ok		
PT	ok 0 ok	1874 ok	0.11 ok	0.10 ok		
PC	ок 0 ок	1874 ok	0.04 ok	0.07 ok		
2,686 1,556	ok 18,125 ok ok 18,125 ok	1874 ok 1461 ok	0.44 ok 0.42 ok	0.25 ok 0.20 ok		
Exit Point 0	ok 0 ok	1461 ok	0.02 ok	0.04 ok		
			0.00 0K	0.00 01		

James River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

James River P5 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information					
Project · [Dominion Atlantic Coast Pineline	l Iser ·	KM	N		
Crossing : 4	Crossing : 42" James River Crossing					
li li	nstallation stress analysis based on worst-case drilled path p	er tolerances	(40' loi	naer		
Comments :	and 30' deeper than design with a 2,800' radius) with 12 ppg r	nud with BC	(
	Line Pipe Properties					
	Pine Outside Diameter =	42 000	in			
	Wall Thickness =	42.000	in			
	Specified Minimum Yield Strength =	70.000	nsi			
	Young's Modulus =	2 9E+07	nsi			
	Moment of Inertia =	23617.82	in ⁴			
	Pipe Face Surface Area =	111 66	in ²			
	Diameter to Wall Thickness Ratio. D/t =	49				
	Poisson's Ratio =	0.3				
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F			
	Pipe Weight in Air =	379.58	lb/ft			
	Pipe Interior Volume = 8.85 ft ³					
	9.62	ft ³ /ft				
	HDD Installation Properties					
	Drilling Mud Density =	12.0	ppg			
	=	89.8	lb/ft ³			
	Ballast Density =	62.4	lb/ft ³			
	Coefficient of Soil Friction = 0.30					
Fluid Drag Coefficient = 0.025 psi						
	551.97	lb/ft				
	Displaced Mud Weight =	863.59	lb/ft			
	Installation Stress Limits					
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi			
	For D/t <= 1,500,000/SMYS, F_b =	52,500	psi	No		
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,508	psi	No		
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,636	psi	Yes		
	Allowable Bending Stress, F _b =	45,636	psi			
	Elastic Hoop Buckling Stress, F _{he} =	10,800	psi			
	For $F_{he} \le 0.55^{*}$ SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,800	psi	Yes		
	For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, $F_{hc} = 33,444$ psi					
	For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, $F_{hc} =$	12,016	psi	No		
	For $F_{he} > 6.2^*SMYS$, $F_{hc} =$	70,000	psi	No		
	Critical Hoop Buckling Stress, F_{hc} =	10,800	psi			
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi			

James River P5 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

James River P5 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 42.000 in Plpe Weight, W = 379.6 lb/r Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d =$ 0.025psiftBallast Weight / ft Pipe, $W_b =$ 552.0lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 863.6lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	Summary of Pulling Load Calculations
Segment Length, L = 1182.8 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 379.6$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 133,386$ lb Fluidic Drag = $12 \pi D L C_d = 0$ lb	Fluidic drag is calculated as zero unless entire segment is submerged in drilling fluid. Please reference Step 2, Drilled Path Input
Axial Segment Weight = $W_e L \sin\theta = -62,487$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Tangent = 70,899 lb	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L = 391.0 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = 82,649 Ib Radius of Curvature, R = 2,800 ft Effective Weight, $W_e = W + W_b - W_m = 68.0$ Ib/ft
h = R [1 - $\cos(\alpha/2)$] = 6.82 ft Y = [18 (L) ²] - [(j) ² (1 - $\cosh(U/2)^{-1}$] = 6.0E+05	$j = [(E I) / T]^{1/2} = 2,879$ X = (3 L) - [(j / 2) tanh(U/2)] = 205.24
U = (12 L) / j = 1.63	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 16,464 lb
Bending Frictional Drag = 2 μ N = 9,879 b Fluidic Drag = 12 π D L C _d = 15,476 b	
Axial Segment Weight = $W_e L \sin\theta = -1,853$ IbPulling Load on Exit Sag Bend =23,501Total Pulling Load =94,399Ib	Negative value indicates axial weight applied in direction of installation
Bottom Tangent	- Summary of Pulling Load Calculations
Segment Length, L = 609.9 ft	Effective Weight, $W_e = W + W_b - W_m = 68.0$ lb/ft
Frictional Drag = $W_e L \mu = 12,435$ lb	
Fluidic Drag = $12 \pi D L C_d = 24,141$ lb	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent =36,575IbTotal Pulling Load =130,975Ib	

James River P5 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

	Entry Sag Bend - Summary of Pulling Load Calculations					
Se Segment Angle w De	gment Length, L = vith Horizontal, θ = flection Angle, α =	488.7 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	146,785 lb 2,800 ft 68.0 lb/ft	
h =	= R [1 - cos(α/2)] =	10.65 ft		$j = [(E I) / T]^{1/2} =$	2,160	
$Y = [18 (L)^{2}] - [(j)^{2}]$	(1 - cosh(U/2) ⁻¹] =	1.9E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	520.17	
	U = (12 L) / j =	2.71	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	15,634 lb	
Bending Friction	nal Drag = 2 μ N =	9,381 lb				
Fluidic Dra	ag = 12 π D L C _d =	19,344 lb				
Axial Segment We	eight = $W_e L \sin \theta$ =	2,895 lb				
Pulling Load on E Tota	Entry Sag Bend = al Pulling Load =	31,620 lb 162,594 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
Se	gment Length, L = Entry Angle, θ =	353.3 ft 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	68.0 lb/ft	
Frictional Dra	$g = W_e L \mu \cos\theta =$	7,094 Ib				
Fluidic Dra	ag = 12 π D L C _d =	13,985 lb				
Axial Segment We	eight = $W_e L \sin \theta$ =	4,170 lb				
Pulling Load on Tota	Entry Tangent = al Pulling Load =	25,250 lb 187,844 lb				
		Summary of Cal	culated Stress vs.	Allowable Stress		
Г			1	[Combined Tensile	
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Bending & Ext. Hoop	
Entry Point	1,682 ok	0 ok	0 ok 283 ok	0.03 ok	0.00 ok	
PC	1,100 ok	18 125 ok	283ok	0.42 ok	0.13 ok	
PT	1,173 ok	18,125 ok	480 ok	0.42 ok	0.13 ok	
	1,173 ok 845 ok	0 ok 0 ok	480 ok 480 ok	0.02 ok 0.01 ok	0.01 ok 0.00 ok	
PC	845 ok	18,125 ok		0.41 ok	0.13 ok	
PT	635 ok	18,125 ok	354 ok	0.41 ok	0.12 ok	
Exit Point	635 ok 0 ok	0 ok 0 ok	354 ok 0 ok	0.01 ok 0.00 ok	0.00 ok 0.00 ok	

James River P5 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information					
Project :	Dominion Atlantic Coast Pipeline	User :	KM	N		
Crossing :	: 42" James River Crossing Date : 2/9/201					
Comments :	Installation stress analysis based on worst-case drilled path p	er tolerances	(40' loi	nger		
Commenta :	and 30' deeper than design with a 2,800' radius) with 12 ppg r	nud and no E	3C			
	Line Pipe Properties					
	Pipe Outside Diameter =	42.000	in			
	Wall Thickness =	0.864	in			
	Specified Minimum Yield Strength =	70,000	psi			
	Young's Modulus =	2.9E+07	psi			
	Moment of Inertia =	23617.82	in ⁴			
	Pipe Face Surface Area =	111.66	in ²			
	Diameter to Wall Thickness Ratio, D/t =	49				
	Poisson's Ratio =	0.3				
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F			
	Pipe Weight in Air = 379.58 lb/ft					
	Pipe Interior Volume = 8.85 ft ³ /ft					
	Pipe Exterior Volume = 9.62 ft ³ /ft					
	HDD Installation Properties					
	Drilling Mud Density =	12.0	ppg			
	=	89.8	lb/ft ³			
	Ballast Density =	62.4	lb/ft ³			
Coefficient of Soil Friction = 0.30						
Fluid Drag Coefficient = 0.025 psi						
Ballast Weight = 551.97 lb/ft						
Displaced Mud Weight = 863.5						
	Installation Stress Limits					
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi			
	For D/t <= 1,500,000/SMYS, F_b =	52,500	psi	No		
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,508	psi	No		
	For D/t > 3,000,000/SMYS and <= 300, F _b = 45,636 psi Yr					
Allowable Bending Stress, F _b = 45,636 psi						
	Elastic Hoop Buckling Stress, F_{he} =	10,800	psi			
	For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,800	psi	Yes		
	For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, $F_{hc} = 33,444$ psi					
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	12,016	psi	No		
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No		
	Critical Hoop Buckling Stress, F _{hc} =	10,800	psi			
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,200	psi			

James River P5 Installation Stress Analysis (worst-case).xlsm

James River P5 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties				
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.			
Pipe Diameter, D = $\begin{array}{c} 42.000 \\ 100 \end{array}$ in PIpe Weight, W = $\begin{array}{c} 379.6 \\ 379.6 \\ 379.6 \end{array}$ lb/f Coefficient of Soil Friction, $\mu = \begin{array}{c} 0.30 \end{array}$	Fluid Drag Coefficient, $C_d =$ psiBallast Weight / ft Pipe, $W_b =$ 552.0lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 863.6lb(If Submerged)Above Ground Load =0lb			
Exit Tangent - S	Summary of Pulling Load Calculations			
Segment Length, L = 1182.8 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 379.6$ lb/ft			
Frictional Drag = W _e L μ cosθ = 133,386 Ib				
Fluidic Drag = $12 \pi D L C_d = 0$ Ib	Fluidic drag is calculated as zero unless entire segment is submerged in drilling fluid. Please reference Step 2, Drilled Path Input			
Axial Segment Weight = $W_e L \sin\theta = -62,487$ lb	Negative value indicates axial weight applied in direction of installation			
Pulling Load on Exit Tangent = 70,899 Ib				
Exit Sag Bend -	Summary of Pulling Load Calculations			
Segment Length, L =391.0ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = $131,497$ lb Radius of Curvature, R = $2,800$ ft Effective Weight, W _e = W + W _b - W _m = -484.0 lb/ft			
h = R [1 - $\cos(\alpha/2)$] = 6.82 ft	j = [(E I) / T] ^{1/2} = 2,282			
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 8.5E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 290.74			
U = (12 L) / j = 2.06	N = [(T h) - W _e cosθ (Y/144)] / (X / 12) 154,204 lb			
Bending Frictional Drag = $2 \mu N = 92,522$ lb				
Fluidic Drag = 12π D L C _d = 15,476 lb				
Axial Segment Weight = $W_e L \sin\theta = 13,200$ lb				
Pulling Load on Exit Sag Bend = 121,198 Ib Total Pulling Load = 192,096 Ib				
Bottom Tangent -	Summary of Pulling Load Calculations			
Segment Length, L = 609.9 ft	Effective Weight, $W_e = W + W_b - W_m = -484.0$ lb/ft			
Frictional Drag = $W_e L \mu = 88,554$ lb				
Fluidic Drag = 12 π D L C _d = 24,141 Ib				
Axial Segment Weight = $W_e L \sin \theta = 0$ lb				
Pulling Load on Bottom Tangent = 112,694 Ib Total Pulling Load = 304,791 Ib				

James River P5 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Entry Sag Bend - Summary of Pulling Load Calculations				
Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	488.7 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = v _e = W + W _b - W _m =	364,718 lb 2,800 ft -484.0 lb/ft
h	= R [1 - cos(α/2)] =	10.65 ft		$j = [(E I) / T]^{1/2} =$	1,370
Y = [18 (L) ²] - [(j)	² (1 - cosh(U/2) ⁻¹] =	2.9E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	799.61
	U = (12 L) / j =	4.28	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	201,875 lb
Bending Friction	onal Drag = 2 μ N =	121,125 lb			
Fluidic Dr	$rag = 12 \pi D L C_d =$	19,344 lb			
Axial Segment W	eight = $W_e L \sin \theta$ =	-20,615 lb	Negative value indicate	es axial weight applied i	n direction of installation
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	119,854 lb 424,645 lb			
		Entry Tangent - S	ummary of Pulling	Load Calculations	
Si	egment Length, L = Entry Angle, θ =	353.3 ft 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	-484.0 lb/ft
Frictional Dr Fluidic Dr Axial Segment W Pulling Load or To	Frictional Drag = $W_e L \mu \cos\theta = 50,522$ b Fluidic Drag = $12 \pi D L C_d = 13,985$ b Axial Segment Weight = $W_e L \sin\theta = -29,695$ b Pulling Load on Entry Tangent = 34,813 b Total Pulling Load = 459,458 b				
		Summary of Cal	culated Stress vs.	Allowable Stress	
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop
Entry Point	4,115 ok	0 ok	0 ok	0.07 ok	0.01 ok
PC	3,803 ok	0 ok	930 ok	0.06 ok	0.02 ok
	3,803 ok 2,730 ok	18,125 ok 18,125 ok	930 ok 1574 ok	0.46 ok 0.44 ok	0.19 ok 0.22 ok
PT	2,730 ok	0 ok	1574 ok	0.04 ok	0.05 ok
PC	1,720 ok	0 ok	1574 ok	0.03 ok	0.05 ok
PT	1,720 ok 635 ok	18,125 ok 18,125 ok	1574 ok 1161 ok	0.42 ok 0.41 ok	0.21 ok 0.16 ok
Exit Point	635 ok 0 ok	0 ok 0 ok	1161 ok 0 ok	0.01 ok 0.00 ok	0.03 ok 0.00 ok

Roanoke River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

PROPOSED TEMPORARY WORKSPACE FUR HDD PIPE SIDE OPERATIONS AND PULL SECTION STAGING TO EXTEND 1, 765' BEYOND HDD EXIT	LL-17-001 N/F COASTAL LUMBER CO. PARCEL I.D. # 1200303	BDR ING RR B-2	RILLED RUANDKE RIVER	PROPUSED TEMPORARY WURKSPACE FOR HDD RIG SIDE OPERATIONS BORING RR B-1
EXIT POINT @ 6 15+58.78,49.1 N 13240693.03, E 2651754.9	•	P. T. 18* SAG BEND 12+33.96, 3.48		P. C. 18* SAG BEND 1+07. 81, 23. 14 RADIUS = 3, 600'
20+00	15+00	10+00		5+00
		N		1
EXISTING GRADE BASED DN SURVEY PDINTS		DRING RR 1		RING RR B-
EXISTING GRADE BASED DN CONTDURS GENERATED FROM LIDAR DATA (TYPICAL)		SILT (ML) SILT SAMD (SM) N S 2 SILT (ML) SILT (ML) A SILT (ML) A		SILT (MD) LEAN CLAY (CD) N. B. 6 N. B. 6 N. B. 6 N. B. 16 N.
		PODRLY GRADED SAND (SP) N.Q. 10 0.2.Q. 1 N.Q. 10 0.2.Q. 1 N.Q. 10	WATER SURFACE	Image: Clar CLD Clar CLD N. D. 9 N. D. 11 N. D. 7 FAT CLAY (CH) N. D. 7
				N. <u>R.</u> 6 N. <u>R.</u> 10 PDDR.Y GRADE SAND (SP) □ 7
	FAT CLAY SANDY PARTI	SP, IFARE_UNAVEL NT_M_6 SNO (CP) O.M.28 N.M. 57 SILT (ML), POSSIBLE N.M. 60 ALLY VEATHERED ROCK		FAT CLAY WITH SAND (OH) N I.3 I.3 35' NT = .50/5' NT NT SANDY SILT (M.), TRACE GRAVEL NT = .100/5'
	FAT CAMINY	N. R. 66 CLAY WITH SAND (CD) 6. 550/4' SILT (ML). POSSIBLE N. R. 66 N. R. 70/11'		SILTY GRAVEL (GP) NT
NDTE: STRATIFICATION LINES AND SUBSURFACE MATERIAL DESCRIPTIONS SHOWN ON THIS DRAWING HAVE BEEN SIMPLIFIED FOR PRESENTATION PURPOSES. REFER TO THE PROJECT GEDTECHNICAL REPORT FOR MORE DETAILED SUBSURFACE INFORMATION	PARTI	ALLY VEATHERED ROCK N.B. 87/11/ N.S. 50/3' N.S. 50/2' ALLY VEATHERED ROCK N.S. 50/1' N.S. 50/1' N.S. 50/1'	DESIGNED DRILLED PROFILE 36' D. D., 0.741' W. T. API 5L X-70 STEEL LINE PIPE	100
NOTE: PLACEMENT OF HORIZONTAL DRILLING RIG IS		AMPHIBOLITE 95 4 V(S 3, 373		

- GEDTECHNICAL NOTES
- 1.
- 2. THE LETTER 'N' TO THE LEFT OF A SAMPLE INDICATES THAT NO GRAVEL WAS DESERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS DESERVED BUT NO GRADATION TEST WAS PERFORMED.
- THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE DF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION DF THIS DATA DUTSIDE DF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DDES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR WIGT UNE LUS POURDENCE AND WOONED IN З. MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.
- TOPOGRAPHIC SURVEY NOTES
- 1. TOPOGRAPHIC SURVEY DATA PROVIDED BY GAI CONSULTANTS, CANONSBURG, PENNSYLVANIA.
- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

PILOT HOLE TOLERANCES

5+00

THE PILOT HOLE SHALL BE DRILLED TO THE TOLERANCES LISTED BELOW. HOWEVER, IN ALL CASES, RIGHT-OF-WAY RESTRICTIONS AND CONCERN FOR ADJACENT FACILITIES SHALL TAKE PRECEDENCE OVER THESE TOLERANCES.

- 1. ENTRY POINT: UP TO 10 FEET FORWARD OR BACK FROM THE DESIGNED ENTRY POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 2. EXIT POINT: UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT POINT, UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 3. ELEVATION: UP TO 5 FEET ABOVE AND 20 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 2,400 FEET BASED ON A 3-JDINT AVERAGE (RANGE 2 DRILL PIPE)

0+00

o+'oo

DRILLED PATH ENTRY/EXIT PDINT

20+00

NDTE: PLACEMENT OF HORIZONTAL DRILLING RIG IS NOT FIXED BY DESIGNATION OF ENTRY AND EXIT PDINTS. DRILLING RIG PLACEMENT AND/OR THE USE OF DUAL RIGS SHALL BE AT CONTRACTOR'S OPTION.

GEDTECHNICAL LEGEND

GENERAL LEGEND

-20

-41

-60

BORING LOCATION

SPLIT SPOON SAMPLE 53 223 - PENETRATION RESISTANCE IN BLOWS PER FOOT

FOR A 140 POUND HAMMER FALLING 30 INCHES PERCENTAGE OF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL

CORE BARREL SAMPLE

- UCS 6,250 UNCONFINED COMPRESSIVE STRENGTH (PSI) 53 6 - MOHS HARDNESS
 - ROCK QUALITY DESIGNATION (PERCENT)

15+00

- GEDTECHNICAL DATA PROVIDED BY GEDSYNTEC CONSULTANTS, RICHMOND, VIRGINIA. REFER TO THE GEDTECHNICAL SITE INVESTIGATION REPORT FOR MORE DETAILED SUBSUCACE INCOMPATION DETAILED SUBSURFACE INFORMATION.

10+00

Roanoke River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pro	ject Information						
Project : Dominion Atlantic Coast Pipe	eline	User :	KM	N			
Crossing : 36" Roanoke River Crossing		Date :	7/22/2	016			
Comments - Installation stress analysis b	Commonte Installation stress analysis based on worst-case drilled path per tolerances (40' longe						
and 18' deeper than design v	vith a 2,400' radius) with 12 ppg r	nud with BC					
Line	Pipe Properties						
	Pipe Outside Diameter =	36.000	in				
	Wall Thickness =	0.741	in				
Spe	ecified Minimum Yield Strength =	70,000	psi				
	Young's Modulus =	2.9E+07	psi				
	Moment of Inertia =	12755.22	in ⁴				
	Pipe Face Surface Area =	82.08	in ²				
Diamet	er to Wall Thickness Ratio, D/t =	49					
	Poisson's Ratio =	0.3					
Co	efficient of Thermal Expansion =	6.5E-06	in/in/°F				
	Pipe Weight in Air =	279.04	lb/ft				
	6.50	ft ³ /ft					
	7.07	ft ³ /ft					
HDD In	HDD Installation Properties						
	Drilling Mud Density =	12.0	ppg				
	=	89.8	lb/ft ³				
	Ballast Density = 62.4 lb/ft ³						
Coefficient of Soil Friction = 0.30							
Fluid Drag Coefficient = 0.025 psi							
	405.51	lb/ft					
	Displaced Mud Weight =	634.48	lb/ft				
Install	ation Stress Limits						
Tensile	Stress Limit, 90% of SMYS, F_t =	63,000	psi				
F	For D/t <= 1,500,000/SMYS, F_b =	52,500	psi	No			
For D/t > 1,500,000/SMY	S and <= 3,000,000/SMYS, F_b =	44,517	psi	No			
For D/t > 3,	000,000/SMYS and <= 300, F_b =	45,639	psi	Yes			
	Allowable Bending Stress, F _b =	45,639	psi				
Ela	stic Hoop Buckling Stress, F_{he} =	10,812	psi				
For F _{he} <= 0.55*SMYS, Cri	tical Hoop Buckling Stress, F_{hc} =	10,812	psi	Yes			
For F _{he} > 0.55	For $F_{he} > 0.55^*$ SMYS and <= 1.6*SMYS, $F_{hc} = 33,446$ psi						
For F _{he} > 1.6	*SMYS and <= $\overline{6.2*SMYS}$, F_{hc} =	12,027	psi	No			
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No			
Cri	tical Hoop Buckling Stress, F_{hc} =	10,812	psi				
Allowable	Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi				

Roanoke River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Roanoke River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Pipe	and Installation Properties				
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.				
Pipe Diameter, D = 36.000 inPIpe Weight, W = 279.0 Ib/fCoefficient of Soil Friction, $\mu =$ 0.30	Fluid Drag Coefficient, $C_d =$ psitBallast Weight / ft Pipe, $W_b =$ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 634.5lb(If Submerged)Above Ground Load =0lb				
Exit Tangent - S	Summary of Pulling Load Calculations				
Segment Length, L = 534.6 ft Exit Angle, $\theta = 8.0$ °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft				
Frictional Drag = $W_e L \mu \cos\theta = 7,952$ lb					
Fluidic Drag = $12 \pi D L C_d = 18,139$ lb					
Axial Segment Weight = $W_e L \sin\theta = -3,725$ lb	Negative value indicates axial weight applied in direction of installation				
Pulling Load on Exit Tangent = 22,366 Ib					
Exit Sag Bend -	Summary of Pulling Load Calculations				
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = $30,855$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = 50.1 lb/ft				
h = R [1 - $\cos(\alpha/2)$] = 5.85 ft	j = [(E I) / T] ^{1/2} = 3,462				
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.5E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 99.59				
U = (12 L) / j = 1.16	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 11,298 lb				
Bending Frictional Drag = $2 \mu N = 6,779$ lb					
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb					
Axial Segment Weight = $W_e L \sin\theta = $ Ib	Negative value indicates axial weight applied in direction of installation				
Pulling Load on Exit Sag Bend = 16,978 lb Total Pulling Load = 39,344 lb					
Bottom Tangent - Summary of Pulling Load Calculations					
Segment Length, L = 4.7 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft				
Frictional Drag = W _e L μ = 71 Ib					
Fluidic Drag = $12 \pi D L C_d = 160$ lb					
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib					
Pulling Load on Bottom Tangent =230IbTotal Pulling Load =39,574Ib					

Roanoke River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend - S	Summary of Pulling	Load Calculations		
Segment Angle • De	egment Length, L = with Horizontal, θ = eflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A\ Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	49,854 lb 2,400 ft 50.1 lb/ft	
h	= R [1 - cos(α/2)] =	9.13 ft		j = [(E I) / T] ^{1/2} =	2,724	
$Y = [18 (L)^2] - [(j)^2]$	² (1 - cosh(U/2) ⁻¹] =	8.3E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	266.28	
	U = (12 L) / j =	1.85	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	7,531 lb	
Bending Friction	onal Drag = 2 μ N =	4,519 lb				
Fluidic Dr	ag = 12 π D L C _d =	14,212 lb				
Axial Segment W	eight = $W_e L \sin \theta$ =	1,828 lb				
Pulling Load on I Tot	Entry Sag Bend = al Pulling Load =	20,559 lb 60,133 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
Se	egment Length, L = Entry Angle, θ =	318.7 ft 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	50.1 lb/ft	
Frictional Dra Fluidic Dr Axial Segment Wa Pulling Load or Tot	Frictional Drag = $W_e L \mu \cos\theta = 4,715$ IbFluidic Drag = $12 \pi D L C_d = 10,815$ IbAxial Segment Weight = $W_e L \sin\theta = 2,771$ IbPulling Load on Entry Tangent = 18,301 IbTotal Pulling Load = 78,434 Ib					
		Summary of Cal	culated Stress vs.	Allowable Stress		
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
Entry Point PC	956 ok 733 ok	0 ok 0 ok	0 ok 255 ok	0.02 ok 0.01 ok	0.00 ok 0.00 ok	
PT	733 ok 482 ok	18,125 ok 18,125 ok	255 ok 424 ok	0.41 ok 0.40 ok	0.12 ok 0.12 ok	
PC	482 ok 479 ok	0 ok 0 ok	424 ok 424 ok	0.01 ok 0.01 ok	0.00 ok 0.00 ok	
PT	479 ok 272 ok	18,125 ok 18,125 ok	424 ok 316 ok	0.40 ok 0.40 ok	0.12 ok 0.12 ok	
Exit Point	272 ok 0 ok	0 ok 0 ok	316 ok -27 ok	0.00 ok 0.00 ok	0.00 ok 0.00 ok	

Roanoke River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information						
Project : Dominion Atlantic Coast Pipeline	User :	KM	N			
Crossing : 36" Roanoke River Crossing	Crossing : 36" Roanoke River Crossing Date : 2/12/2					
Comments I Installation stress analysis based on worst-case drilled path p	er tolerances	; (58' loi	nger			
and 20' deeper than design with a 2,400' radius) with 12 ppg	mud and no E	BC				
Line Pipe Properties						
Pipe Outside Diameter =	36.000	in				
Wall Thickness =	0.741	in				
Specified Minimum Yield Strength =	70,000	psi				
Young's Modulus =	2.9E+07	psi				
Moment of Inertia =	12755.22	in ⁴				
Pipe Face Surface Area =	82.08	in ²				
Diameter to Wall Thickness Ratio, D/t =	49					
Poisson's Ratio =	0.3					
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F				
Pipe Weight in Air =	279.04	lb/ft				
Pipe Interior Volume =	6.50	ft ³ /ft				
Pipe Exterior Volume =	7.07	ft ³ /ft				
HDD Installation Properties						
Drilling Mud Density =	12.0	ppg				
=	89.8	lb/ft ³				
Ballast Density =	62.4	lb/ft ³				
Coefficient of Soil Friction =	0.30					
Fluid Drag Coefficient =	0.025	psi				
Ballast Weight =	405.51	lb/ft				
Displaced Mud Weight =	634.48	lb/ft				
Installation Stress Limits						
Tensile Stress Limit, 90% of SMYS, F _t =	63,000	psi				
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No			
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No			
For D/t > 3,000,000/SMYS and <= 300, F _b = 45,639 psi Y						
Allowable Bending Stress, F _b = 45,639 psi						
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi				
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes			
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No			
For $F_{he} > 1.6^*SMYS$ and $<= 6.2^*SMYS$, $F_{hc} = 12,027$ psi						
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No			
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi				
Allowable Hoop Buckling Stress, Fhc/1.5 =	7,208	psi				

Roanoke River R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Grade

Elevation

Points

Roanoke River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	Pipe and Installation Properties				
Based on profile des	sign entered in 'Step 2, Drilled Path Input'.				
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 634.5lb(If Submerged)Above Ground Load =0lb				
Exit Tangent - S	ummary of Pulling Load Calculations				
Segment Length, L = 534.6 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft				
Frictional Drag = $W_e L \mu \cos\theta = 56,452$ Ib					
Fluidic Drag = 12π D L C _d = 18,139 lb					
Axial Segment Weight = $W_e L \sin\theta = 26,446$ lb					
Pulling Load on Exit Tangent = 101,037 Ib					
Exit Sag Bend -	Summary of Pulling Load Calculations				
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = $142,235$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft				
h = R [1 - $\cos(\alpha/2)$] = 5.85 ft	j = [(E I) / T] ^{1/2} = 1,613				
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 8.0E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 322.05				
U = (12 L) / j =2.49	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 104,529 lb				
Bending Frictional Drag = $2 \mu N = 62,717$ lb					
Fluidic Drag = 12π D L C _d = 11,370 lb					
Axial Segment Weight = $W_e L \sin\theta = 8,309$ Ib					
Pulling Load on Exit Sag Bend = 82,396 Ib Total Pulling Load = 183,432 Ib					
Bottom Tangent -	Summary of Pulling Load Calculations				
Segment Length, L = 4.7 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft				
Frictional Drag = W _e L µ = 502 Ib					
Fluidic Drag = $12 \pi D L C_d = 160$ lb					
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib					
Pulling Load on Bottom Tangent = 661 Ib Total Pulling Load = 184,094 Ib					

Roanoke River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Segment Length, L =418.9ftAverage Tension, T =223,422lbSegment Angle with Horizontal, θ =10.0°Radius of Curvature, R =2,400ftDeflection Angle, α =5.0°Effective Weight, W _e = W + W _b - W _m =-355.4lb/fth = R [1 - cos(\alpha/2)] =9.13ftj = [(E I) / T]^{1/2} =1,287Y = [18 (L) ²] - [(j) ² (1 - cosh(U/2) ⁻¹] =2.0E+06X = (3 L) - [(j / 2) tanh(U/2)] =638.65								
$h = R [1 - \cos(\alpha/2)] = 9.13 \text{ ft} \qquad j = [(E \ I) / T]^{1/2} = 1,287$ $Y = [18 \ (L)^2] - [(i)^2 \ (1 - \cosh(U/2)^{-1}] = 2.0E + 06 \qquad X = (3 \ L) - [(i / 2) \tanh(U/2)] = 638.65$								
$Y = [18 (L)^{2}] - [(i)^{2} (1 - \cosh(U/2)^{-1}] = 2.0E + 06 \qquad X = (3 L) - [(i / 2) \tanh(U/2)] = 638.65$								
U = (12 L) / j = 3.91 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = $129,034$ lb								
Bending Frictional Drag = 2 μ N = 77,420 Ib								
Fluidic Drag = 12 π D L C _d = 14,212 lb								
Axial Segment Weight = $W_e L \sin\theta = -12,976$ lb Negative value indicates axial weight applied in direction of installation								
Pulling Load on Entry Sag Bend =78,656IbTotal Pulling Load =262,750Ib								
Entry Tangent - Summary of Pulling Load Calculations								
Segment Length, L = 318.7 ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft Entry Angle, θ = 10.0 °								
Frictional Drag = $W_e L \mu \cos\theta = 33,472$ lb Fluidic Drag = $12 \pi D L C_d = 10,815$ lb Axial Segment Weight = $W_e L \sin\theta = -19,673$ lb Pulling Load on Entry Tangent = 24,613 lb Total Pulling Load = 287,363 lb								
Summary of Calculated Stress vs. Allowable Stress								
Tensile StressBending StressExternal Hoop StressCombined Tensile & BendingCombined Tensile, Bending & Ext. Hoop								
Entry Point 3,501 ok 0 ok 0 ok 0.06 ok 0.00 ok 3,201 ok 0 ok 838 ok 0.05 ok 0.02 ok PC								
3,201 ok 18,125 ok 838 ok 0.45 ok 0.18 ok 2,243 ok 18,125 ok 1390 ok 0.43 ok 0.20 ok								
2,243 ok 0 ok 1390 ok 0.04 ok 0.04 ok 2,235 ok 0 ok 1390 ok 0.04 ok 0.04 ok PC <								
2,235 ok 18,125 ok 1390 ok 0.43 ok 0.20 ok 1,231 ok 18,125 ok 1037 ok 0.42 ok 0.16 ok								
1,231 ok 0 ok 1037 ok 0.02 ok 0.02 ok Exit Point 0 ok 0 ok -90 ok 0.00 ok 0.00 ok								

Fishing Creek

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

-ROCK QUALITY DESIGNATION (PERCENT)

AILANIIC COAST FIFELINE FRUJECI	DI AND DROFILE	34 INCH DIDEI INE COASSING AF FISHING CDEEV	DUTINGELE LEPTINE CAUGGEROUSE FIGHTING CAREA BY HADIZANTAT DIDECTIONAT DDITTING	DI HOMEON LAE DIVECTIONAE DAILERING	OCATION: HALIFAX & NASH COUNTIES, NORTH CAROLINA	RAWN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	MN/LKB 10/07/16 DMP/ACM JSP SHOWN FOR FISHING CREEK 0
						Δ	CHK'D APP.
							BY C
							REVISION DESCRIPTION
							ATE
							NO.
		Jettrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	Ι	Do	PRO mi	oje ni	ст N on\	ю. 15	08
	ŀ	ł	P	2	-()3	34

Fishing Creek P1 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information								
Project : Dominion Atlantic Coast Pipeline	User :	ACI	М					
Crossing : 36" Fishing Creek Crossing Date : 9/29/201								
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger					
and 20' deeper than design with a 2,400' radius) with 12 ppg mud with BC								
Line Pipe Properties								
Pipe Outside Diameter =	36.000	in						
Wall Thickness =	0.741	in						
Specified Minimum Yield Strength =	70,000	psi						
Young's Modulus =	2.9E+07	psi						
Moment of Inertia =	12755.22	in ⁴						
Pipe Face Surface Area =	82.08	in ²						
Diameter to Wall Thickness Ratio, D/t =	49							
Poisson's Ratio =	0.3							
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F						
Pipe Weight in Air =	279.04	lb/ft						
Pipe Interior Volume =	6.50	ft ³ /ft						
Pipe Exterior Volume =	7.07	ft ³ /ft						
HDD Installation Properties								
Drilling Mud Density =	12.0	ppg						
=	89.8	lb/ft ³						
Ballast Density =	62.4	lb/ft ³						
Coefficient of Soil Friction = 0.30								
Fluid Drag Coefficient =	0.025	psi						
Ballast Weight =	405.51	lb/ft						
Displaced Mud Weight =	634.48	lb/ft						
Installation Stress Limits								
Tensile Stress Limit, 90% of SMYS, Ft =	63,000	psi						
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No					
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No					
For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes					
Allowable Bending Stress, F _b =	45,639	psi						
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi						
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes					
For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, F_{hc} =	33,446	psi	No					
For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, F_{hc} =	12,027	psi	No					
For $F_{he} > 6.2^*SMYS$, $F_{hc} =$	70,000	psi	No					
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi						
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi						

Fishing Creek P1 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Fishing Creek P1 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties							
Based on profile design entered in 'Step 2, Drilled Path Input'.							
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/f Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d = $ 0.025psitBallast Weight / ft Pipe, $W_b = $ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 634.5lb(If Submerged)Above Ground Load = 0lb						
Exit Tangent - S	Summary of Pulling Load Calculations						
Segment Length, L = 632.5 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft						
Frictional Drag = $W_e L \mu \cos\theta = 9,409$ lb							
Fluidic Drag = $12 \pi D L C_d = 21,462$ lb							
Axial Segment Weight = $W_e L \sin\theta = -4,408$ lb	Negative value indicates axial weight applied in direction of installation						
Pulling Load on Exit Tangent = 26,463 Ib							
Exit Sag Bend -	Summary of Pulling Load Calculations						
Segment Length, L = 335.1 ft	Average Tension, T = 35,058 lb						
Deflection Angle, $\alpha = -4.0$ °	Effective Weight, $W_p = W + W_p - W_m = 50.1$ lb/ft						
h = R [1 - cos(α/2)] = 5.85 ft	$j = [(E I) / T]^{1/2} = 3,248$						
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.8E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 111.36						
U = (12 L) / j =1.24	N = [(T h) - W _e cosθ (Y/144)] / (X / 12) 11,652 lb						
Bending Frictional Drag = $2 \mu N = 6,991$ lb							
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb							
Axial Segment Weight = $W_e L \sin\theta = -1,170$ lb	Negative value indicates axial weight applied in direction of installation						
Pulling Load on Exit Sag Bend = 17,190 Ib Total Pulling Load = 43,653 Ib							
Bottom Tangent	- Summary of Pulling Load Calculations						
Segment Length, L = 34.8 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft						
Frictional Drag = $W_e L \mu = 522$ lb							
Fluidic Drag = $12 \pi D L C_d = 1,179$ lb							
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib							
Pulling Load on Bottom Tangent = 1,701 Ib Total Pulling Load = 45,354 Ib							

Fishing Creek P1 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend - S	Summary of Pulling	Load Calculations				
Segment Angle	Segment Length, L = with Horizontal, θ = Deflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radi Effective Weight, V	verage Tension, T = us of Curvature, R = / _e = W + W _b - W _m =	55,822 lb 2,400 ft 50.1 lb/ft			
r Y = [18 (L) ²] - [(j	n = R [1 - cos(α/2)] = $\left[\frac{1}{2} - \frac{1}{2} + \frac{1}{2}$	9.13 ft 9.0E+05	X = (3 L) -	j = [(E I) / T] ^{1/2} = [(j / 2) tanh(U/2)] =	2,574 289.42			
	U = (12 L) / j =	1.95	N = [(T h) - $W_e \cos\theta$	(Y/144)] / (X / 12) =	8,159 lb			
Bending Frict	ional Drag = 2 μ N =	4,895 lb						
Fluidic D	$rag = 12 \pi D L C_d =$	14,212 lb						
Axial Segment W	$Veight = W_e L \sin\theta =$	1,828 lb						
Pulling Load on To	Entry Sag Bend = otal Pulling Load =	20,935 lb 66,290 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
s	Segment Length, L = Entry Angle, θ =	457.3 ft 10.0 °	Effective Weight, V	/ _e = W + W _b - W _m =	50.1 lb/ft			
Frictional D Fluidic D Axial Segment W Pulling Load o To	Frictional Drag = $W_e L \mu \cos\theta = 6,765$ lb Fluidic Drag = $12 \pi D L C_d = 15,516$ lb Axial Segment Weight = $W_e L \sin\theta = 3,976$ lb Pulling Load on Entry Tangent = 26,257 lb Total Pulling Load = 92,546 lb							
		Summary of Cal	Iculated Stress vs.	Allowable Stress				
Entry Point	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
PC	808 ok	0 ok 18,125 ok	346 ok	0.02 OK 0.01 Ok 0.41 Ok	0.00 ok 0.00 ok			
PT	553 ok 553 ok	18,125 ok 0 ok	514 ok 514 ok	0.41 ok 0.01 ok	0.13 ok 0.01 ok			
PC	532 ok 532 ok 322 ok	0 ok 18,125 ok 18,125 ok	514 ok 514 ok 406 ok	0.01 ok 0.41 ok 0.40 ok	0.01 ok 0.13 ok 0.12 ok			
PT Exit Point	322 ok 0 ok	0 ok 0 ok	406 ok 0 ok	0.01 ok 0.00 ok	0.00 ok 0.00 ok			

Fishing Creek P1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information								
Project : Dominion Atlantic Coast Pipeline	User :	AC	М					
Crossing : 36" Fishing Creek Crossing Date : 9/29/201								
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger					
and 20' deeper than design with a 2,400' radius) with 12 ppg mud and no BC								
Line Pipe Properties								
Pipe Outside Diameter =	36.000	in						
Wall Thickness =	0.741	in						
Specified Minimum Yield Strength =	70,000	psi						
Young's Modulus =	2.9E+07	psi						
Moment of Inertia =	12755.22	in ⁴						
Pipe Face Surface Area =	82.08	in ²						
Diameter to Wall Thickness Ratio, D/t =	49							
Poisson's Ratio =	0.3							
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F						
Pipe Weight in Air =	279.04	lb/ft						
Pipe Interior Volume =	6.50	ft ³ /ft						
Pipe Exterior Volume =	7.07	ft ³ /ft						
HDD Installation Properties								
Drilling Mud Density =	12.0	ppg						
=	89.8	lb/ft ³						
Ballast Density =	62.4	lb/ft ³						
Coefficient of Soil Friction = 0.30								
Fluid Drag Coefficient =	0.025	psi						
Ballast Weight =	405.51	lb/ft						
Displaced Mud Weight =	634.48	lb/ft						
Installation Stress Limits								
Tensile Stress Limit, 90% of SMYS, Ft =	63,000	psi						
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No					
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No					
For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes					
Allowable Bending Stress, F _b =	45,639	psi						
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi						
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes					
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No					
For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, F_{hc} =	12,027	psi	No					
For $F_{he} > 6.2^*SMYS$, $F_{hc} =$	70,000	psi	No					
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi						
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi						

Fishing Creek P1 Installation Stress Analysis (worst-case).xlsm

Fishing Creek P1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	and Installation Properties					
Based on profile design entered in 'Step 2, Drilled Path Input'.						
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d = $ 0.025psiBallast Weight / ft Pipe, $W_b = $ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 634.5lb(If Submerged)Above Ground Load = 0lb					
Exit Tangent - S	Summary of Pulling Load Calculations					
Segment Length, L = 632.5 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft					
Frictional Drag = $W_e L \mu \cos\theta = 66,793$ lb						
Fluidic Drag = 12 m D L C_{d} = 21,462 Ib						
Axial Segment Weight = $W_e L \sin\theta = 31,291$ lb						
Pulling Load on Exit Tangent = 119,546 Ib						
Exit Sag Bend -	Summary of Pulling Load Calculations					
Segment Length, L =335.1ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = $161,186$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft					
h = R [1 - cos(α/2)] = 5.85 ft	j = [(E I) / T] ^{1/2} = 1,515					
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 8.6E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 347.42					
U = (12 L) / j =2.65	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) $106,005$ lb					
Bending Frictional Drag = $2 \mu N = 63,603$ lb						
Fluidic Drag = 12 π D L C _d = 11,370 lb						
Axial Segment Weight = $W_e L \sin\theta = 8,309$ lb						
Pulling Load on Exit Sag Bend = 83,281 Ib Total Pulling Load = 202,827 Ib						
Bottom Tangent -	Summary of Pulling Load Calculations					
Segment Length, L = 34.8 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft					
Frictional Drag = W _e L µ = 3,706 Ib						
Fluidic Drag = $12 \pi D L C_d = 1,179$ lb						
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib						
Pulling Load on Bottom Tangent =4,885IbTotal Pulling Load =207,712Ib						

Fishing Creek P1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
Seg Segment Angle w De	gment Length, L = /ith Horizontal, θ = flection Angle, α =	418.9 10.0 5.0 •	A Radii Effective Weight, W	verage Tension, T = us of Curvature, R = / _e = W + W _b - W _m =	247,725 lb 2,400 ft -355.4 lb/ft			
h =	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	1,222			
$Y = [18 (L)^2] - [(j)^2]$	(1 - cosh(U/2) ⁻¹] =	2.0E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	665.31			
	U = (12 L) / j =	4.11	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	131,318 lb			
Bending Friction	nal Drag = 2 μ N =	78,791 lb						
Fluidic Dra	$g = 12 \pi D L C_d =$	14,212 lb						
Axial Segment We	$ight = W_e L \sin\theta =$	-12,976 lb	Negative value indicate	es axial weight applied i	n direction of installation			
Pulling Load on E Tota	ntry Sag Bend = al Pulling Load =	80,027 lb 287,738 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
Se	Segment Length, L = 457.3 ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft Entry Angle, $\theta = 10.0$ °							
Frictional Dra	$g = W_e L \mu \cos\theta = [$	48,022 lb						
Axial Segment We Pulling Load on Tota	$ \mathbf{g} = \mathbf{W}_{e} \mathbf{L} \sin \theta = $ $ \mathbf{g} = \mathbf{W}_{e} \mathbf{L} \sin \theta = $ $ \mathbf{g} = \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$	-28,225 lb 35,312 lb 323,050 lb	Negative value indicate	es axial weight applied i	n direction of installation			
		Summary of Cal	culated Stress vs	Allowable Stress				
		Cullinary of Cul						
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	3,936 ok	0 ok	0 ok	0.06 ok	0.00 ok			
PC	3,506 OK	U 0K	1135 OK	0.06 OK	0.03 ok			
	3,506 ok 2,531 ok	18,125 ok 18,125 ok	1135 ok 1687 ok	0.45 ok 0.44 ok	0.20 ok 0.23 ok			
P1 	2,531 ok	0 ok	1687 ok	0.04 ok	0.06 ok			
PC	2,471 OK	0 0K	1007 UK	0.04 OK	0.06 0k			
PT	2,471 ok 1,456 ok	18,125 ok 18,125 ok	1687 ok 1333 ok	0.44 ok 0.42 ok	0.23 ok 0.19 ok			
Exit Point	1,456 ok 0 ok	0 ok 0 ok	1333 ok 0 ok	0.02 ok 0.00 ok	0.04 ok 0.00 ok			

Swift Creek

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

100

SPLIT SPOON SAMPLE

53 23-FOR A 140 POUND HAMMER FALLING 30 INCHES PERCENTAGE OF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL

SHELBY TUBE SAMPLE

CORE BARREL SAMPLE

UCS 6,250 ---- UNCONFINED COMPRESSIVE STRENGTH (PSI) ----- MOHS HARDNESS 53_6

-ROCK QUALITY DESIGNATION (PERCENT)

- 2. THE LETTER 'N' TO THE LEFT OF A SAMPLE INDICATES THAT NO GRAVEL WAS DBSERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS DBSERVED BUT NO GRADATION TEST WAS PERFORMED
- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE DF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION DF THIS DATA DUTSIDE DF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR WIGT USE HIS DIAN EXPERIENCE AND WORKANT IN MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

DRILLED PATH NOTES

- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 2. EXIT POINT: UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 3. ELEVATION: UP TO 5 FEET ABOVE AND 15 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 2,400 FEET BASED ON A 3-JDINT AVERAGE (RANGE 2 DRILL PIPE)

1. CONTACT THE UTILITY LOCATION/NOTIFICATION SERVICE FOR THE CONSTRUCTION AREA.

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

ATLANTIC COAST PIPELINE PROJECT	DI AN AND BROEFFE	24 INCH DIDDI INE CDOSSINC OF SWIFT CREEV	PUTICH FIFTLINE CROSSING OF SWIFT CREED RV HADIZANTAL NIDECTIONAL NDH LINC	DI HOMIZONTAE DINECTIONAE DINEETING	LOCATION: NASH COUNTY, NORTH CAROLINA	DRAWN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	ACM/KMN 10/07/16 KMN/LKB JSP SHOWN FOR SWIFT CREEK 0
							REVISION DESCRIPTION BY CHKD APP
							NO. DATE
		Jettrey S. Fuckett, F.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	ı P))) 	^{рко} mi M	оле ni пе 2	ст N 0 п \ POS , -(о. 15 г) 2	¹⁰⁸

Swift Creek R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information						
Project : Dominion Atlantic Coast Pipeline	User :	JSI	Р			
Crossing : 36" Swift Creek Crossing	Date :	10/10/2	2016			
Comments : Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger			
and 15' deeper than design with a 2,400' radius) with 12 ppg r	nud with BC					
Line Pipe Properties						
Pipe Outside Diameter =	36.000	in				
Wall Thickness =	0.741	in				
Specified Minimum Yield Strength =	70,000	psi				
Young's Modulus =	2.9E+07	psi				
Moment of Inertia =	12755.22	in ⁴				
Pipe Face Surface Area =	82.08	in ²				
Diameter to Wall Thickness Ratio, D/t =	49					
Poisson's Ratio =	0.3					
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F				
Pipe Weight in Air =	279.04	lb/ft				
Pipe Interior Volume =	6.50	ft ³ /ft				
Pipe Exterior Volume =	7.07	ft ³ /ft				
HDD Installation Properties						
Drilling Mud Density =	12.0	ppg				
=	89.8	lb/ft ³				
Ballast Density =	62.4	lb/ft ³				
Coefficient of Soil Friction = 0.30						
Fluid Drag Coefficient =	0.025	psi				
Ballast Weight =	405.51	lb/ft				
Displaced Mud Weight =	634.48	lb/ft				
Installation Stress Limits						
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi				
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No			
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No			
For D/t > $3,000,000/SMYS$ and <= $300, F_b$ =	45,639	psi	Yes			
Allowable Bending Stress, F _b =	45,639	psi				
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi				
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes			
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No			
For $F_{he} > 1.6^*SMYS$ and <= 6.2*SMYS, F_{hc} =	12,027	psi	No			
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No			
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi				
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi				

Swift Creek R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Swift Creek R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	Pipe and Installation Properties						
Based on profile design entered in 'Step 2, Drilled Path Input'.							
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/f Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d = 0.025$ psitBallast Weight / ft Pipe, $W_b = 405.5$ lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = 634.5$ lb(If Submerged)Above Ground Load = 0lb						
Exit Tangent - S	Summary of Pulling Load Calculations						
Segment Length, L = 485.9 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft						
Frictional Drag = $W_e L \mu \cos\theta = 7,228$ lb							
Fluidic Drag = 12 m D L C_{d} = 16,486 Ib Axial Segment Weight = W _e L sin θ = -3,386 Ib	Negative value indicates axial weight applied in direction of installation						
Pulling Load on Exit Tangent = 20,328 Ib							
Exit Sag Bend -	Summary of Pulling Load Calculations						
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = $28,764$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = 50.1 lb/ft						
h = R [1 - cos(α/2)] = 5.85 ft	$j = [(E I) / T]^{1/2} = 3,586$						
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.3E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 93.59						
U = (12 L) / j = 1.12	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 11,122 lb						
Bending Frictional Drag = $2 \mu N = 6,673$ lb							
Axial Segment Weight = $W_e L \sin\theta = -1,170$ lb	Negative value indicates axial weight applied in direction of installation						
Pulling Load on Exit Sag Bend = 16,872 Ib Total Pulling Load = 37,200 Ib							
Bottom Tangent	- Summary of Pulling Load Calculations						
Segment Length, L = 41.2 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft						
Frictional Drag = $W_e L \mu = 620$ lb							
Fluidic Drag = $12 \pi D L C_d = 1,400$ lb							
Axial Segment Weight = $W_e L \sin \theta = 0$ lb							
Pulling Load on Bottom Tangent = 2,019 Ib Total Pulling Load = 39,219 Ib							
Swift Creek R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend -	Summary of Pulling	Load Calculations		
Segment Angle	iegment Length, L = with Horizontal, θ = Deflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radii Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	49,487 lb 2,400 ft 50.1 lb/ft	
h	n = R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	2,734	
$Y = [18 (L)^2] - [(j)]$) ² (1 - cosh(U/2) ⁻¹] =	8.3E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	264.81	
	U = (12 L) / j =	1.84	N = [(T h) - $W_e \cos\theta$	(Y/144)] / (X / 12) =	7,492 lb	
Bending Fricti	onal Drag = 2 μ N =	4,495 lb				
Fluidic D	rag = 12 π D L C _d =	14,212 lb				
Axial Segment W	/eight = W _e L sinθ =	1,828 lb				
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	20,536 lb 59,755 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
s	egment Length, L = Entry Angle, θ =	402.4 ft 10.0 °	Effective Weight, V	V _e = W + W _b - W _m =	50.1 lb/ft	
Frictional Dr Fluidic D Axial Segment W Pulling Load o To	rag = W _e L μ cosθ = rag = 12 π D L C _d = /eight = W _e L sinθ = n Entry Tangent = otal Pulling Load =	5,952 lb 13,652 lb 3,498 lb 23,102 lb 82,857 lb				
		Summary of Ca	Iculated Stress Vs.	Allowable Stress		
Entry Point	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
	728 ok	0 ok	252 ok	0.01 ok	0.00 ok	
PT	728 ok 478 ok 478 ok	18,125 ok 18,125 ok 0 ok	252 ok 420 ok 420 ok	0.41 ok 0.40 ok	0.12 ok 0.12 ok 0.00 ok	
	453 OK	U OK	420 OK	0.01 OK	0.00 OK	
PC	453 ok 248 ok	18,125 ok 18,125 ok	420 ok 312 ok	0.40 ok 0.40 ok	0.12 ok 0.12 ok	
Exit Point	0 ok	0 ok	0 ok	0.00 ok	0.00 ok	
1						

Swift Creek R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	JSI	Ρ
Crossing : 36" Swift Creek Crossing	Date :	10/10/2	2016
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger
and 15' deeper than design with a 2,400' radius) with 12 ppg r	mud and no B	BC .	
Line Pipe Properties			
Pipe Outside Diameter =	36.000	in	
Wall Thickness =	0.741	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	12755.22	in ⁴	
Pipe Face Surface Area =	82.08	in²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	279.04	lb/ft	
Pipe Interior Volume =	6.50	ft ³ /ft	
Pipe Exterior Volume =	7.07	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction = 0.30			
Fluid Drag Coefficient = 0.025 psi			
Ballast Weight =	405.51	lb/ft	
Displaced Mud Weight =	634.48	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, Ft =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No
For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes
Allowable Bending Stress, F _b =	45,639	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi	
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No
For $F_{he} > 1.6^*SMYS$ and <= 6.2*SMYS, F_{hc} =	12,027	psi	No
For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi	

Swift Creek R0 Installation Stress Analysis (worst-case).xlsm

Swift Creek R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile des	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ psiBallast Weight / ft Pipe, $W_b =$ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 634.5lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 485.9 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 51,308$ lb	
Fluidic Drag = 12 π D L C _d = 16,486 lb	
Axial Segment Weight = $W_e L \sin \theta = 24,036$ lb	
Pulling Load on Exit Tangent = 91,830 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = 132,807 Ib Radius of Curvature, R = 2,400 ft Effective Weight, $W_e = W + W_b - W_m = -355.4$ Ib/ft
h = R [1 - cos(α/2)] = 5.85 ft	j = [(E I) / T] ^{1/2} = 1,669
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 7.7E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 308.46
U = (12 L) / j =	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 103,794 Ib
Bending Frictional Drag = $2 \mu N = 62,276$ lb	
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb	
Axial Segment Weight = $W_e L \sin \theta = 8,309$ Ib	
Pulling Load on Exit Sag Bend = 81,955 Ib Total Pulling Load = 173,785 Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 41.2 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft
Frictional Drag = W _e L µ = 4,398 Ib	
Fluidic Drag = 12 π D L C _d = 1,400 lb	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent =5,798IbTotal Pulling Load =179,583Ib	

Swift Creek R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Segment Angle with Horizontal, a = 418.9 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 4 10.0 1 10 10		Entry Sag Bend - Summary of Pulling Load Calculations						
$ \begin{array}{c} h = \mathbb{R} \left[1 - \cos(\alpha/2)\right] = 0.13 \text{ft} \qquad j = \left[(\mathbb{E} \ / 1 / 1^{1/2} = 1.300 \right] \\ Y = \left[18 \left(L_{1}^{2}\right) - \left[(0\right)^{2} \left(1 - \cosh(U/2)^{2}\right)^{2}\right] = 1.900 X = (3 \perp 1 - \left[(0/2) \tanh(U/2)\right] = \frac{6.33.47}{6.33.47} \\ U = (12 \perp 1 / 1) = \frac{3.87}{3.87} \qquad N = \left[(T \ h) - W_{n} \cos(\theta (Y/144) / (X/12) = 1.28.598 \right] \text{ib} \\ \end{array} \right. \\ \begin{array}{c} \text{Bending Frictional Drag = 2 \mu N = 77.159 \text{Ib} \\ \text{Fluidic Drag = 12 m D L C_{q} = 1.42.12 \text{Ib} \\ \text{Axial Segment Weight = W_{n} L \sin \theta = 1.2.976 \text{Ib} \\ \text{Total Pulling Load on Entry Sag Bend = 1.2.976 \text{Ib} \\ \text{Total Pulling Load on Entry Sag Bend = 1.2.977 \text{Ib} \\ \hline \end{array} \\ \begin{array}{c} \text{Segment Length, L = 402.4 \text{ft} \\ \text{Entry Tangent - Summary of Pulling Load Calculations} \\ \hline \end{array} \\ \begin{array}{c} \text{Segment Length, L = 402.4 \text{ft} \\ \text{Entry Tangent - Summary of Pulling Load Calculations} \\ \hline \end{array} \\ \begin{array}{c} \text{Axial Segment Weight = W_{n} L \sin \theta = 1.2.976 \text{ib} \\ \text{Frictional Drag = 12 m D L C_{q} = 1.3.652 \text{ib} \\ \text{Finitional Drag = W_{q} L \mu \cos \theta = 4.2.255 \text{ib} \\ \hline \end{array} \\ \begin{array}{c} \text{Finitional Drag = W_{q} L \mu \cos \theta = 4.2.255 \text{ib} \\ \text{Finder Vange is 0 = 24.834 \text{ib} \\ \hline \end{array} \\ \begin{array}{c} \text{Segment Weight = W_{q} L \sin \theta = 24.834 \text{ib} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{Summary of Calculated Stress vs. Allowable Stress} \\ \hline \end{array} \\ \begin{array}{c} \text{Summary of Calculated Stress vs. Allowable Stress} \\ \hline \end{array} \\ \begin{array}{c} \text{Entry Point } & 3.522 \text{ok} & 0 \text{ok} & 0 \text{ok} & 0.066 \text{ok} & 0.020 \text{ok} \\ \hline \end{array} \\ \begin{array}{c} \text{Onbined Tensile} \\ \text{Hoop} \\ \text{Hoop} \\ \text{Hoop} & 0 \text{ok} & 13778 \text{ok} & 0.033 \text{ok} & 0.020 \text{ok} \\ \hline \end{array} \\ \begin{array}{c} \text{Frictional Stress} & Bending Stress & External Hoop} \\ \hline \end{array} \\ \begin{array}{c} \text{Combined Tensile} \\ \text{Hoop} \\ \text{Hoop} \\ \text{Hoop} & 0 \text{ok} & 13778 \text{ok} & 0.033 \text{ok} & 0.020 \text{ok} \\ \hline \end{array} \\ \begin{array}{c} \text{Frictional Stress} & Bending Stress & 1.3778 \text{ok} & 0.033 \text{ok} & 0.020 \text{ok} \\ \hline \end{array} \\ \begin{array}{c} \text{Frictional Stress} & 0 \text{ok} & 1.3778 \text{ok} & 0.033 \text{ok} & 0.020 \text{ok} \\ \hline \end{array} \\ \begin{array}{c} \text{Frictional Stress} & 0 \text{ok} & 1.3778 \text{ok} & 0.033 \text{ok} & 0.020 \text{ok} \\ \hline \end{array} $	Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radii Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	218,780 lb 2,400 ft -355.4 lb/ft		
$Y = [18 (L)^{2} - (0)^{2} (1 - cosh(U2)^{2}] = 1.9E + 06 \qquad X = (3 L) - [(1/2) tanh(U2)] = 63.17 \\ U = (12 L) / j = 3.87 \qquad N = [(T h) - W_{e} cos8 (Y/144)] / (X / 12) = 128,598] b \\ Bending Frictional Drag = 2 \mu N = 77,159] b \\ Fluidic Drag = 12 \pi D L C_{g} = 14.212] b \\ Axial Segment Weight = W_{g} L sin0 = 12.976 b \\ Negative value indicates axial weight applied in direction of installation \\ Pulling Load on Entry Sag Bend = 78,394 b \\ Total Pulling Load = 257,977 b \\ \hline \\ Entry Tangent - Summary of Pulling Load Calculations \\ \hline \\ Segment Length, L = 402.4 ft \\ Entry Angle, 0 = 10.0 ^{\circ} \\ \hline \\ Frictional Drag = W_{g} L \mu cos0 = 42,252 b \\ Fluidic Drag = 12 \pi D L C_{g} = 13,652 b \\ Fluidic Drag = 12 \pi D L C_{g} = 13,652 b \\ \hline \\ Axial Segment Weight = W_{g} L sin0 = -24,834 b \\ \hline \\ Negative value indicates axial weight applied in direction of installation \\ \hline \\ Pulling Load on Entry Tangent = 31,070 b \\ \hline \\ \hline \\ Entry Point 3,522 & 0k & 0 & 0k & 0 & 0k & 0.06 & 0k & 0.000 & 0k \\ \hline \\ Pr & 3,143 & 0k & 18,125 & 0k & 326 & 0k & 0.036 & 0k & 0.000 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.000 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,118 & 0k & 0 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,118 & 0k & 0 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 18,125 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 0 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 0 & 0k & 1378 & 0k & 0.033 & 0k & 0.040 & 0k \\ Pr & 2,117 & 0k & 0 & 0k & 0 & 0k & 0 & 0k & 0.000 & 0k & 0.000 & 0k \\ Pr & 1,119 & 0k & 0 & 0k & 0 & 0k & 0 & 0k & 0.000 & 0k & 0.000 & 0k$	h	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	1,300		
$U = (12 L) I = \underbrace{3.87} \qquad N = [(T h) - W_{\phi} \cos\theta (Y/144)] / (X / 12) = \underbrace{128.598} \text{ tb}$ Bending Frictional Drag = 2 μ N = $\begin{bmatrix} 77, 159 \\ 14, 212 \end{bmatrix}$ b Axial Segment Weight = W_{\phi} L sin0 = $\underbrace{12.970} \text{ (b)}$ Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = $\begin{bmatrix} 78,394 \\ 257,977 \end{bmatrix}$ b Entry Tangent - Summary of Pulling Load Calculations Entry Angle, $\theta = \underbrace{10.0}{0.0}^{\circ}$ Effective Weight, $W_{\phi} = W + W_{b} - W_{m} = \underbrace{355.4}_{1000} \text{ (b)}$ for the Pulling Load on Entry Tangent = $\underbrace{31,070}_{240,00}$ b Axial Segment Weight = $W_{\phi} L \mu \cos\theta = \underbrace{42.252}_{20,00}$ b Frictional Drag = $W_{\phi} L \mu \cos\theta = \underbrace{42.252}_{20,00}$ b Axial Segment Weight = $W_{\phi} L \pm \sin\theta = \underbrace{-24.834}_{20,00}$ b Axial Segment Weight = $W_{\phi} L \pm \sin\theta = \underbrace{-24.834}_{20,00}$ b Pulling Load on Entry Tangent = $\underbrace{31,070}_{200,00}$ b Entry Point $\underbrace{5.522}_{0.00} \otimes 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	Y = [18 (L) ²] - [(j)	² (1 - cosh(U/2) ⁻¹] =	1.9E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	633.17		
Bending Frictional Drag = 2 μ N =T7,159IbFluidic Drag = 12 π D L C _q =14,212IbAxial Segment Weight = W _q L sin0 =-12,976IbNegative value indicates axial weight applied in direction of installationPulling Load on Entry Sag Bend =78,394IbEntry Tangent - Summary of Pulling Load CalculationsSegment Length, L =402.4ftEffective Weight, W _q = W + W _q - W _m =-355.4Ib/ftFrictional Drag = W _q L μ cos0 =422.222IbFluidic Drag = 12 π D L C _q =13,652IbSummary of Calculated Stress vs. Allowable StressCombined TensileCombined TensilePulling Load on Entry Tangent =31,070IbSummary of Calculated Stress vs. Allowable StressCombined TensileCombined TensileSummary of Calculated Stress vs. Allowable StressEntry Point3.622ok0Add k0Oth Rending StressEntry Point3.622ok0Oth Rending StressEntry Point3.622<		U = (12 L) / j =	3.87	$N = [(T h) - W_e \cos\theta]$	(Y/144)] / (X / 12) =	128,598 lb		
Fluidic Drag = 12 π D L C _g = 14.212 bAxial Segment Weight = W _n L sin0 = 12.976 bNegative value indicates axial weight applied in direction of installationPulling Load on Entry Sag Bend = 78.394 bTotal Pulling Load = 279.977 bEntry Tangent - Summary of Pulling Load CalculationsSegment Length, L = 402.4 ftEffective Weight, W _n = W + W _b - W _m = -355.4 b/ftFrictional Drag = W _n L μ cos0 = 42.252 bFluidic Drag = 12 π D L C _g = 13.652 bAxial Segment Weight = W _n L sin0 = -24.834 bNegative value indicates axial weight applied in direction of installationPulling Load on Entry Tangent = 31.070 bSummary of Calculated Stress vs. Allowable StressEntry Point 3.522 ok 0 ok 0 0 ok 0.006 ok 0.000	Bending Friction	onal Drag = 2 μ N =	77,159 lb					
Axial Segment Weight = W _e L sin = $\frac{-12.976}{10}$ b Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = $\frac{78.394}{257.977}$ b Entry Tangent - Summary of Pulling Load Calculations Segment Length, L = $\frac{402.4}{10.0}$ ft Effective Weight, W _e = W + W _b - W _m = $\frac{-355.4}{355.4}$ fb/ft Frictional Drag = W _e L μ cos = $\frac{42.252}{10.0}$ b Fuldic Drag = 12 π D L C _g = $\frac{13,652}{13,652}$ b Axial Segment Weight = W _e L sin = $\frac{-24,634}{10}$ ib Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Tangent = $\frac{31,070}{10}$ b Zag.047 ib Entry Point $\frac{3.522}{0.143}$ ok $\frac{0}{0}$ ok $\frac{0}{0.26}$ ok $\frac{0.066}{0.05}$ ok $\frac{0.02}{0.02}$ ok $\frac{0}{0.02}$ ok $\frac{0.020}{0.02}$ ok $\frac{0.045}{0.02}$ ok $\frac{0.043}{0.00}$ ok $\frac{0.04}{0.03}$ ok $\frac{0.04}{0.00}$ ok $\frac{0.04}{0.03}$ ok $\frac{0.04}{0.00}$ ok $\frac{0.04}{0.00}$ ok $\frac{0.04}{0.00}$ ok $\frac{0.020}{0.00}$	Fluidic Di	$rag = 12 \pi D L C_d =$	14,212 lb					
Pulling Load on Entry Sag Bend = 78,394 16 Entry Tangent - Summary of Pulling Load Calculations Entry Tangent - Summary of Pulling Load Calculations Segment Length, L = 402.4 [t] Effective Weight, We = W + Wb - Wm = -355.4 [lb/ft] Frictional Drag = We L μ cos θ = 42.252 [lb Frictional Drag = We L μ cos θ = 42.252 [lb Axial Segment Weight = We L sin θ = -24.834 [lb Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Tangent = 31.070 [lb Combined Tensile Bending Stress External Hoop Combined Tensile, Bending & Ext. Pulling Load on Entry Tangent = 31.070 [lb Summary of Calculated Stress vs. Allowable Stress Tensile Stress Bending Stress External Hoop Combined Tensile, Bending & Ext. Primaile Stress Bending Stress Cambined Tensile, Bending & Ext. Primaile Stress Bending Stress Combined Tensile, Bending & Ext. Primaile Stress Bending Stress Combined Tensile, Be	Axial Segment W	eight = $W_e L \sin \theta$ =	-12,976 lb	Negative value indicate	es axial weight applied i	n direction of installation		
Entry Tangent - Summary of Pulling Load CalculationsSegment Length, L =402.4 Entry Angle, θ =402.4 10.0ftEffective Weight, We = W + Wb - Wm =-355.4Ib/ftFrictional Drag = We L μ cos θ =42.252IbFluidic Drag = 12 m D L Cd =13.652IbAxial Segment Weight = We L sin θ =24.834IbSummary of Calculated Stress vs. Allowable StressCombined Tensile & Bending & Ext. HoopTensile StressExternal Hoop StressCombined Tensile & Bending & Ext. HoopPulling Load on Entry Tangent =21,070IbSummary of Calculated Stress vs. Allowable StressCombined Tensile & Bending & Ext. HoopHoopQuite to the tensile StressEntry Point3,522ok0Other Combined Tensile & Bending & Ext. HoopPrimate StressExternal Hoop StressCombined Tensile & Bending & Ext. HoopPrimate StressOther Colspan="2">Combined Tensile & Bending & Ext. HoopPrimate Stress <td colspan<="" td=""><th>Pulling Load on To</th><td>Entry Sag Bend = tal Pulling Load =</td><td>78,394 lb 257,977 lb</td><td></td><td></td><td></td><td></td></td>	<th>Pulling Load on To</th> <td>Entry Sag Bend = tal Pulling Load =</td> <td>78,394 lb 257,977 lb</td> <td></td> <td></td> <td></td> <td></td>	Pulling Load on To	Entry Sag Bend = tal Pulling Load =	78,394 lb 257,977 lb				
Segment Length, L =Effective Weight, We = W + Wb - Wm =-355.4Ib/ftFrictional Drag = We L μ cos0 =42,252IbFluidic Drag = 12 π D L Cg =13,652IbAxial Segment Weight = We L sin0 =-24,834IbNegative value indicates axial weight applied in direction of installationPulling Load on Entry Tangent =31,070IbTensile StressBending StressExternal HoopCombined Tensile, Bending & Ext. HoopCombined TensileStressCombined TensileCombined Tensile, Bending & Ext. HoopPoint3,522ok0ok000.006ok0.020okPC			Entry Tangent - S	ummary of Pulling	Load Calculations			
$Frictional Drag = W_e L \mu \cos \theta = 42.252 \text{ ib}$ $Fluidic Drag = 12 \pi D L C_d = 13.652 \text{ ib}$ $Axial Segment Weight = W_e L sin \theta = -24.834 \text{ ib} \qquad \text{Negative value indicates axial weight applied in direction of installation}$ $Pulling Load on Entry Tangent = 31.070 \text{ ib} \\ 289,047 \text{ ib} \\ \hline Total Pulling Load = 289,047 $	S	Segment Length, L = 402.4 ft Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft Entry Angle, $\theta = 10.0$ °						
Axial Segment Weight = We L sin@ = -24.834 lbNegative value indicates axial weight applied in direction of installationPulling Load on Entry Tangent =31,070IbSummary of Calculated Stress vs. Allowable StressCombined Tensile, Bending & Ext. HoopTensile StressExternal Hoop StressCombined Tensile, Bending & Ext. HoopPoint3,522ok0ok0.06ok0.000okPrival AllowsCombined Tensile, Bending & Ext. HoopFentry Point3,522ok0ok0.06ok0.000okPrival AllowsCombined Tensile, Bending & Ext. HoopFor prival 3,522ok0ok0ok0.000okOutCombined Tensile, Bending & Ext. HoopPrival AllowCombined Tensile, Bending & Ext. HoopPrival AllowokOutQuarket and the tensile Bending & Ext. HoopPrival AllowStressCombined Tensile, Bending & Ext. HoopPrival Allow <t< th=""><th>Frictional Dr Fluidic Di</th><th colspan="4">Frictional Drag = $W_e L \mu \cos\theta = 42,252$ lb Fluidic Drag = 12 π D L C_d = 13,652 lb</th></t<>	Frictional Dr Fluidic Di	Frictional Drag = $W_e L \mu \cos\theta = 42,252$ lb Fluidic Drag = 12 π D L C _d = 13,652 lb						
Summary of Calculated Stress vs. Allowable Stress Tensile Stress Bending Stress External Hoop Stress Combined Tensile, & Bending & Ext. Hoop Entry Point 3,522 3,143 ok 0 ok 0 ok 0.06 ok 0.00 ok PC	Axial Segment W Pulling Load of To	eight = W _e L sinθ = n Entry Tangent = tal Pulling Load =	-24,834 lb 31,070 lb 289,047 lb	Negative value indicate	es axial weight applied i	n direction of installation		
Tensile Stress Bending Stress External Hoop Stress Combined Tensile & Bending & Ext. Hoop Entry Point 3,522 ok 0 ok 0 ok 0.06 ok 0.00 ok PC			Summary of Cal	Iculated Stress vs.	Allowable Stress			
Entry Point 3,522 ok 0 ok 0 ok 0.06 ok 0.00 ok A3,143 ok 0 ok 826 ok 0.05 ok 0.02 ok PC		Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop		
PC	Entry Point	3,522 ok 3,143 ok	0 ok 0 ok	0 ok 826 ok	0.06 ok 0.05 ok	0.00 ok 0.02 ok		
PI 2,188 ok 0 ok 1378 ok 0.03 ok 0.04 ok 2,117 ok 0 ok 1378 ok 0.03 ok 0.04 ok PC	PC	3,143 ok 2,188 ok	18,125 ok 18,125 ok	826 ok 1378 ok	0.45 ok 0.43 ok	0.18 ok 0.20 ok		
2,117 ok 18,125 ok 1378 ok 0.43 ok 0.20 ok 1,119 ok 18,125 ok 1024 ok 0.41 ok 0.16 ok PT	PT	2,188 ok 2,117 ok	0 ok 0 ok	1378 ok 1378 ok	0.03 ok 0.03 ok	0.04 ok 0.04 ok		
1,119 ok 0 ok 1024 ok 0.02 ok 0.02 ok Exit Point 0 ok 0 ok 0 ok 0.00 ok 0.00 ok	PC	2,117 ok 1,119 ok	18,125 ok 18,125 ok	1378 ok 1024 ok	0.43 ok 0.41 ok	0.20 ok 0.16 ok		
	Exit Point	1,119 ok 0 ok	0 ok 0 ok	1024 ok 0 ok	0.02 ok 0.00 ok	0.02 ok 0.00 ok		

Tar River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

20+00

DRILLED PATH ENTRY/EXIT PDINT

GEDTECHNICAL LEGEND

GENERAL LEGEND

18

16

14

12

100

BORING LOCATION

SPLIT SPOON SAMPLE

PENETRATION RESISTANCE IN BLOWS PER FOOT 53 **2**3-FUR A 140 POUND HAMMER FALLING 30 INCHES PERCENTAGE DF GRAVEL BY WEIGHT FUR SAMPLES CONTAINING GRAVEL

CORE BARREL SAMPLE

UCS 6,250 ---- UNCONFINED COMPRESSIVE STRENGTH (PSI) 53____6 → MDHS HARDNESS

- ROCK QUALITY DESIGNATION (PERCENT)

GEDTECHNICAL NOTES

- GEDTECHNICAL DATA PROVIDED BY GEDSYNTEC CONSULTANTS, RALEIGH, NORTH CAROLINA. REFER TO THE GEDTECHNICAL SITE INVESTIGATION REPORT DATED SEPTEMBER 2016 FOR MORE DETAILED SUBSURFACE INFORMATION. 1.
- 2. THE LETTER 'N' TO THE LEFT OF A SPLIT SPOON SAMPLE INDICATES THAT NO GRAVEL WAS OBSERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS OBSERVED BUT NO GRADATION TEST WAS PERFORMED
- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE DRIGINAL BREINGS MAY BE DDNE TO CHARACTERIZE THE SOLL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE HUBEREN, COMMENTED DE ACCURATEL HIESECTOR MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

TOPOGRAPHIC SURVEY NOTES

- 1. TOPOGRAPHIC SURVEY DATA PROVIDED BY GAI CONSULTANTS, CANONSBURG, PENNSYLVANIA.
- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

- 1. DRILLED PATH STATIONING IS IN FEET BY HARTZANTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

PILOT HOLE TOLERANCES

THE PILOT HOLE SHALL BE DRILLED TO THE TOLERANCES LISTED BELOW. HOWEVER, IN ALL CASES, RIGHT-OF-WAY RESTRICTIONS AND CONCERN FOR ADJACENT FACILITIES SHALL TAKE PRECEDENCE OVER THESE TOLERANCES.

- 1. ENTRY POINT: UP TO 10 FEET FORWARD OR BACK FROM THE DESIGNED ENTRY POINT, UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 2. EXIT POINT: UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 3. ELEVATION: UP TO 5 FEET ABOVE AND 20 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT

5. CURVE RADIUS: NO LESS THAN 2,400 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

Tar River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	AC	М
Crossing : 36" Tar River Crossing	Date :	9/29/2	2016
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger
and 17' deeper than design with a 2,400' radius) with 12 ppg r	nud with BC		
Line Pipe Properties			
Pipe Outside Diameter =	36.000	in	
Wall Thickness =	0.741	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	12755.22	in ⁴	
Pipe Face Surface Area =	82.08	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	279.04	lb/ft	
Pipe Interior Volume =	6.50	ft ³ /ft	
Pipe Exterior Volume =	7.07	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction = 0.30			
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	405.51	lb/ft	
Displaced Mud Weight =	634.48	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F _t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No
For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes
Allowable Bending Stress, F _b =	45,639	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi	
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No
For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, F_{hc} =	12,027	psi	No
For $F_{he} > 6.2*SMYS$, $F_{hc} =$	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi	

Tar River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Tar River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 634.5lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 389.3 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 5,790$ lb	
Fluidic Drag = $12 \pi D L C_d = 13,207$ lb	
Axial Segment Weight = $W_e L \sin\theta = -2,713$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Tangent = 16,285 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = $24,616$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = 50.1 lb/ft
h = R [1 - cos(α/2)] = 5.85 ft	j = [(E I) / T] ^{1/2} = 3,876
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.0E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 81.40
U = (12 L) / j = 1.04	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 10,772 lb
Bending Frictional Drag = $2 \mu N = 6,463$ lb	
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb	
Axial Segment Weight = $W_e L \sin\theta = -1,170$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Sag Bend =16,663IbTotal Pulling Load =32,947Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 186.4 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft
Frictional Drag = W _e L µ = 2,800 Ib	
Fluidic Drag = 12 π D L C _d = 6,324 Ib	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent =9,123IbTotal Pulling Load =42,070Ib	

Tar River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend - S	Summary of Pulling	Load Calculations		
Segment Angle	egment Length, L = with Horizontal, θ = beflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radii Effective Weight, V	verage Tension, T = us of Curvature, R = / _e = W + W _b - W _m =	52,431 lb 2,400 ft 50.1 lb/ft	
h	$= R [1 - \cos(\alpha/2)] =$	9.13 ft	X = (2)	$j = [(E I) / T]^{1/2} =$	2,656	
Y = [18 (L)] - [(j)]) (1 - cosn(U/2)] =	8.0E+05	X = (3 L) -	$[(1/2) \tan(0/2)] =$	270.44	
	U = (12 L) / J =	1.89	$N = [(I n) - W_e \cos\theta]$	(Y/144)] / (X / 12) =	7,802 Ib	
Bending Fricti	onal Drag = 2 μ N =	4,681 lb				
Fluidic D	rag = 12 π D L C _d =	14,212 lb				
Axial Segment W	/eight = $W_e L \sin\theta$ =	1,828 lb				
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	20,722 lb 62,792 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
s	egment Length, L = Entry Angle, θ =	236.5 ft 10.0 °	Effective Weight, W	$V_{e} = W + W_{b} - W_{m} =$	50.1 lb/ft	
Frictional Dr Fluidic D	rag = W _e L μ cosθ = rag = 12 π D L C _d =	3,499 lb				
Axial Segment W	/eight = W _e L sinθ =	2,056 lb				
Pulling Load o To	n Entry Tangent = tal Pulling Load =	13,579 lb 76,371 lb				
		Summary of Cal	culated Stress vs.	Allowable Stress		
		[ľ			
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
Entry Point	930 ok 765 ok	0 ok 0 ok	0 ok 190 ok	0.01 ok 0.01 ok	0.00 ok 0.00 ok	
PC	765 ok 513 ok	18,125 ok 18,125 ok	190 ok 358 ok	0.41 ok 0.41 ok	0.12 ok 0.12 ok	
PT	513 ok	0 ok	358 ok	0.01 ok	0.00 ok	
PC	401 ok	0 ok	358 ok	0.01 ok	0.00 ok	
PT	401 ok 198 ok	18,125 ok 18,125 ok	358 ok 250 ok	0.40 ok 0.40 ok	0.12 ok 0.11 ok	
Exit Point	198 ok 0 ok	0 ok 0 ok	250 ok 0 ok	0.00 ok 0.00 ok	0.00 ok 0.00 ok	

Tar River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information			
Project : D	Dominion Atlantic Coast Pipeline	User :	ACI	М
Crossing : 3	36" Tar River Crossing	Date :	9/29/2	016
Comments · II	nstallation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger
a	and 18' deeper than design with a 2,400' radius) with 12 ppg r	nud and no E	C	
	Line Pipe Properties			
	Pipe Outside Diameter =	36.000	in	
	Wall Thickness =	0.741	in	
	Specified Minimum Yield Strength =	70,000	psi	
	Young's Modulus =	2.9E+07	psi	
	Moment of Inertia =	12755.22	in ⁴	
	Pipe Face Surface Area =	82.08	in ²	
	Diameter to Wall Thickness Ratio, D/t =	49		
	Poisson's Ratio =	0.3		
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
	Pipe Weight in Air =	279.04	lb/ft	
	Pipe Interior Volume =	6.50	ft ³ /ft	
	Pipe Exterior Volume =	7.07	ft ³ /ft	
	HDD Installation Properties			
	Drilling Mud Density =	12.0	ppg	
	=	89.8	lb/ft ³	
	Ballast Density = 62.4 lb/ft ³			
	Coefficient of Soil Friction = 0.30			
Fluid Drag Coefficient = 0.025 psi				
	Ballast Weight = 405.51 lb/ft			
	Displaced Mud Weight =	634.48	lb/ft	
	Installation Stress Limits			
	Tensile Stress Limit, 90% of SMYS, Ft =	63,000	psi	
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No
	For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes
	Allowable Bending Stress, F _b =	45,639	psi	
	Elastic Hoop Buckling Stress, F _{he} =	10,812	psi	
	For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes
	For F _{he} > 0.55*SMYS and <= 1.6*SMYS, F _{hc} =	33,446	psi	No
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	12,027	psi	No
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No
	Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	
	Allowable Hoop Buckling Stress, $F_{hc}/1.5 =$	7,208	psi	

Tar River R0 Installation Stress Analysis (worst-case).xlsm

Tar River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	and Installation Properties
Based on profile des	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/ft Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d = $ 0.025psiBallast Weight / ft Pipe, $W_b = $ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 634.5lb(If Submerged)Above Ground Load = 0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 389.3 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 41,103$ lb	
Fluidic Drag = $12 \pi D L C_d = 13,207$ lb	
Axial Segment Weight = $W_e L \sin\theta = 19,255$ lb	
Pulling Load on Exit Tangent = 73,565 Ib	
Exit Sag Bend - S	Summary of Pulling Load Calculations
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = $114,105$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft
h = R [1 - cos(α/2)] = 5.85 ft	j = [(E I) / T] ^{1/2} = 1,800
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 7.0E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 279.33
U = (12 L) / j =2.23	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 102,336 lb
Bending Frictional Drag = $2 \mu N = 61,402$ lb	
Fluidic Drag = 12 π D L C _d = 11,370 lb	
Axial Segment Weight = $W_e L \sin\theta = 8,309$ lb	
Pulling Load on Exit Sag Bend = 81,080 Ib Total Pulling Load = 154,645 Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 186.4 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft
Frictional Drag = W _e L μ = 19,873 Ib	
Fluidic Drag = 12 π D L C _d = 6,324 Ib	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent = 26,197 Ib Total Pulling Load = 180,842 Ib	

Tar River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend -	Summary of Pulling	Load Calculations		
Segment Segment Angle with Ho Deflectio	Length, L = prizontal, θ = n Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radi Effective Weight, V	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	220,076 lb 2,400 ft -355.4 lb/ft	
h = R [1	- cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	1,296	
$Y = [18 (L)^{2}] - [(j)^{2} (1 - cc)]$	osh(U/2) ⁻¹] =	2.0E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	634.72	
U	= (12 L) / j =	3.88	N = [(T h) - $W_e \cos\theta$	(Y/144)] / (X / 12) =	128,719 lb	
Bending Frictional Dra	ag = 2 μ N =	77,232 lb				
Fluidic Drag = 12	2 π D L C _d =	14,212 lb				
Axial Segment Weight =	$W_e L \sin \theta =$	-12,976 lb	Negative value indicat	es axial weight applied i	n direction of installatior	1
Pulling Load on Entry S Total Pull	ag Bend = ing Load =	78,468 lb 259,310 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
Segment Entr	Length, L = y Angle, θ =	236.5 ft 10.0 °	Effective Weight, V	$V_e = W + W_b - W_m =$	-355.4 lb/ft	
Frictional Drag = W	_e L μ cosθ =	24,836 lb				
Fluidic Drag = 12	2 π D L C _d =	8,024 lb				
Axial Segment Weight =	W _e L sinθ =	-14,597 lb	Negative value indicat	es axial weight applied i	n direction of installatior	ı
Pulling Load on Entry Total Pull	Tangent = ing Load =	18,263 lb 277,573 lb				
		Summary of Ca	Iculated Stress vs.	Allowable Stress		
			Г		A A A T A	
Tens	ile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Bending & Ext. Hoop	
Entry Point 3	3,382 ok	0 ok	0 ok	0.05 ok	0.00 ok	
PC	8,159 ok	0 ok	622 ok	0.05 ok	0.01 ok	
	8,159 ok 2,203 ok	18,125 ok 18,125 ok	622 ok 1174 ok	0.45 ok 0.43 ok	0.17 ok 0.19 ok	
PT2	2,203 ok	0 ok	1174 ok	0.03 ok	0.03 ok	
PC 1	,884 ok	0 ok	1174 ok	0.03 ok	0.03 ok	
	,884 ok 896 ok	18,125 ok 18,125 ok	1174 ok 820 ok	0.43 ok 0.41 ok	0.18 ok 0.15 ok	
Exit Point	896 ok	0 ok	820 ok	0.01 ok	0.01 ok	
	U UK	U UK		0.00 0K	0.00 08	

Contentnea Creek

Supporting Information

- Preliminary plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)

Contentnea Creek P2 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information			
Project : Dominion Atla	antic Coast Pipeline	User :	ACI	М
Crossing : 36" Contentne	ea Creek Crossing	Date :	9/29/2	016
Comments . Installation st	ress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger
and 18' deepe	er than design with a 2,400' radius) with 12 ppg r	nud with BC		
	Line Pipe Properties			
	Pipe Outside Diameter =	36.000	in	
	Wall Thickness =	0.741	in	
	Specified Minimum Yield Strength =	70,000	psi	
	Young's Modulus =	2.9E+07	psi	
	Moment of Inertia =	12755.22	in ⁴	
	Pipe Face Surface Area =	82.08	in ²	
	Diameter to Wall Thickness Ratio, D/t =	49		
	Poisson's Ratio =	0.3		
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
	Pipe Weight in Air =	279.04	lb/ft	
	Pipe Interior Volume =	6.50	ft ³ /ft	
	Pipe Exterior Volume =	7.07	ft ³ /ft	
	HDD Installation Properties			
	Drilling Mud Density =	12.0	ppg	
	=	89.8	lb/ft ³	
	Ballast Density =	62.4	lb/ft ³	
	Coefficient of Soil Friction =	0.30		
	Fluid Drag Coefficient =	0.025	psi	
	Ballast Weight =	405.51	lb/ft	
	Displaced Mud Weight =	634.48	lb/ft	
	Installation Stress Limits			
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi	
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1	1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,517	psi	No
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,639	psi	Yes
	Allowable Bending Stress, F _b =	45,639	psi	
	Elastic Hoop Buckling Stress, F_{he} =	10,812	psi	
For F _{he} <= 0	$0.55*SMYS$, Critical Hoop Buckling Stress, F_{hc} =	10,812	psi	Yes
	For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,446	psi	No
	For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, F_{hc} =	12,027	psi	No
	For $F_{he} > 6.2*SMYS$, $F_{hc} =$	70,000	psi	No
	Critical Hoop Buckling Stress, F_{hc} =	10,812	psi	
	Allowable Hoop Buckling Stress, $F_{hc}/1.5 =$	7,208	psi	

Contentnea Creek P2 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Contentnea Creek P2 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 Ib/fi Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, Wb =405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, Wb =634.5lb(If Submerged)Above Ground Load =0lblb
Exit Tangent - S	Summary of Pulling Load Calculations
Segment Length, L = 384.5 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 5,720$ lb	
Fluidic Drag = 12 π D L C _d = 13,046 lb	
Axial Segment Weight = $W_e L \sin\theta = -2,679$ lb	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Tangent = 16,086 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L =335.1ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = $24,412$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = 50.1 lb/ft
h = R [1 - cos(α/2)] = 5.85 ft	j = [(E I) / T] ^{1/2} = 3,893
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.0E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 80.79
U = (12 L) / j = 1.03	N = [(T h) - W _e cosθ (Y/144)] / (X / 12) 10,755 lb
Bending Frictional Drag = $2 \mu N = 6,453$ lb	
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb	
Axial Segment Weight = $W_e L \sin\theta = -1,170$ Ib	Negative value indicates axial weight applied in direction of installation
Pulling Load on Exit Sag Bend = 16,652 Ib Total Pulling Load = 32,739 Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 0.4 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft
Frictional Drag = W _e L µ =6 Ib	
Fluidic Drag = 12 m D L C_{d} = 12 Ib	
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib	
Pulling Load on Bottom Tangent = 18 Ib Total Pulling Load = 32,757 Ib	

Contentnea Creek P2 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Say Benu - 3	Summary of Fulling	Loau Calculations		
Seg Segment Angle w Def	gment Length, L = ith Horizontal, θ = lection Angle, α =	418.9 10.0 5.0	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = / _e = W + W _b - W _m =	42,814 lb 2,400 ft 50.1 lb/ft	
h =	R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	2,939	
$Y = [18 (L)^2] - [(j)^2]$	(1 - cosh(U/2) ⁻¹] =	7.4E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	237.13	
	U = (12 L) / j = 1.71 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 6,790 Ib					
Bending Friction	al Drag = 2 μ N =	4,074 lb				
Fluidic Dra	g = 12 π D L C _d =	14,212 lb				
Axial Segment Wei	ght = W _e L sinθ =	1,828 lb				
Pulling Load on Er Tota	ntry Sag Bend = I Pulling Load =	20,114 lb 52,871 lb				
		Entry Tangent - S	Summary of Pulling	Load Calculations		
Seç	Segment Length, L = 238.8 ft Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft Entry Angle, $\theta = 10.0$ °					
Frictional Drag	Frictional Drag = $W_e L \mu \cos\theta = 3,532$ Ib Fluidic Drag = 12 π D L C _d = 8,101 Ib					
Axial Segment Wei	ght = $W_e L \sin \theta$ =	2,076 lb				
Pulling Load on Tota	Entry Tangent = I Pulling Load =	13,708 lb 66,579 lb				
		Summary of Cal	Iculated Stress vs.	Allowable Stress		
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
Entry Point	811 ok	0 ok	0 ok	0.01 ok	0.00 ok	
	644 ok	0 ok	187 ok	0.01 ok	0.00 ok	
PC						
	644 ok	18,125 ok	187 ok	0.41 ok	0.12 ok	
PT	399 ok	18,125 ok	355 ok	0.40 ok	0.12 ok	
	399 ok	0 ok	355 ok	0.01 ok	0.00 ok	
	399 ok	0 ok	355 ok	0.01 ok	0.00 ok	
PC						
	399 ok	18,125 ok	355 ok	0.40 ok	0.12 ok	
PT	196 ok	18,125 ok	247 ok	0.40 ok	0.11 ok	
	196 ok	0 ok	247 ok	0.00 ok	0.00 ok	
Exit Point	0 ok	0 ok	0 ok	0.00 ok	0.00 ok	
				- I I		

Contentnea Creek P2 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information				
Project : Dominion Atlantic Coast Pipeline	User :	AC	М	
Crossing : 36" Contentnea Creek Crossing Date : 9/29/20				
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger	
and 18' deeper than design with a 2,400' radius) with 12 ppg r	mud and no E	BC		
Line Pipe Properties				
Pipe Outside Diameter =	36.000	in		
Wall Thickness =	0.741	in		
Specified Minimum Yield Strength =	70,000	psi		
Young's Modulus =	2.9E+07	psi		
Moment of Inertia =	12755.22	in ⁴		
Pipe Face Surface Area =	82.08	in ²		
Diameter to Wall Thickness Ratio, D/t =	49			
Poisson's Ratio =	0.3			
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F		
Pipe Weight in Air =	279.04	lb/ft		
Pipe Interior Volume =	6.50	ft ³ /ft		
Pipe Exterior Volume =	7.07	ft ³ /ft		
HDD Installation Properties				
Drilling Mud Density =	12.0	ppg		
=	89.8	lb/ft ³		
Ballast Density =	62.4	lb/ft ³		
Coefficient of Soil Friction =	0.30			
Fluid Drag Coefficient = 0.025 psi				
Ballast Weight =	405.51	lb/ft		
Displaced Mud Weight =	634.48	lb/ft		
Installation Stress Limits				
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi		
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No	
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_{b} =	44,517	psi	No	
For D/t > 3,000,000/SMYS and <= 300, F_b =	45,639	psi	Yes	
Allowable Bending Stress, F_b =	45,639	psi		
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi		
For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,812	psi	Yes	
For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,446	psi	No	
For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, $F_{hc} = 12,027$ psi				
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No	
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi		
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi		

Contentnea Creek P2 Installation Stress Analysis (worst-case).xlsm

Contentnea Creek P2 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties			
Based on profile design entered in 'Step 2, Drilled Path Input'.				
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/f Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 634.5lb(If Submerged)Above Ground Load =0lb			
Exit Tangent - S	ummary of Pulling Load Calculations			
Segment Length, L = 384.5 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft			
Frictional Drag = $W_e L \mu \cos\theta = 40,602$ lb				
Fluidic Drag = 12 m D L C_{d} = 13,046 lb				
Axial Segment Weight = $W_e L \sin\theta = 19,021$ lb				
Pulling Load on Exit Tangent = 72,669 Ib				
Exit Sag Bend -	Summary of Pulling Load Calculations			
Segment Length, L =335.1ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = 113,188 lb Radius of Curvature, R = 2,400 ft Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft			
h = R [1 - cos(α/2)] = 5.85 ft	$j = [(E I) / T]^{1/2} = 1,808$			
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 6.9E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 277.82			
U = (12 L) / j =	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 102,264 lb			
Bending Frictional Drag = 2 μ N = 61,359 lb				
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb				
Axial Segment Weight = $W_e L \sin\theta = 8,309$ lb				
Pulling Load on Exit Sag Bend = 81,037 Ib Total Pulling Load = 153,706 Ib				
Bottom Tangent -	Summary of Pulling Load Calculations			
Segment Length, L = 0.4 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft			
Frictional Drag = $W_e L \mu =$ 39 Ib				
Fluidic Drag = $12 \pi D L C_d = 12$ Ib				
Axial Segment Weight = $W_e L \sin\theta = 0$ lb				
Pulling Load on Bottom Tangent = 52 Ib Total Pulling Load = 153,758 Ib				

Contentnea Creek P2 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations						
Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	418.9 ft 10.0 ∘ 5.0 ∘	A Radii Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	192,206 lb 2,400 ft -355.4 lb/ft	
h	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	1,387	
Y = [18 (L) ²] - [(j)	² (1 - cosh(U/2) ⁻¹] =	1.8E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	599.07	
U = (12 L) / j = <u>3.62</u>			$N = [(T h) - W_e \cos\theta]$	(Y/144)] / (X / 12) =	126,100 lb	
Bending Friction	onal Drag = 2 μ N =	75,660 lb				
Fluidic Di	$rag = 12 \pi D L C_d =$	14,212 lb				
Axial Segment W	eight = $W_e L \sin \theta$ =	-12,976 lb	Negative value indicate	es axial weight applied i	n direction of installation	
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	76,896 lb 230,654 lb				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
S	Segment Length, L = 238.8 ft Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft Entry Angle, $\theta = 10.0$ °					
Frictional Drag = $W_e L \mu \cos\theta = 25,072$ IbFluidic Drag = $12 \pi D L C_d = 8,101$ IbAxial Segment Weight = $W_e L \sin\theta = -14,736$ IbNegative value indicates axial weight applied in direction of installationPulling Load on Entry Tangent = 18,436Total Pulling Load = 249,090						
		Summary of Cal	culated Stress vs.	Allowable Stress		
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop	
Entry Point	3,035 ok	0 ok	0 ok	0.05 ok	0.00 ok	
PC	2,810 OK	0 ok	612 OK	0.04 ok	0.01 ok	
DT	2,810 ok 1,873 ok	18,125 ok 18,125 ok	612 ok 1164 ok	0.44 ok 0.43 ok	0.16 ok 0.18 ok	
P I	1,873 ok	0 ok	1164 ok	0.03 ok	0.03 ok	
PC	1,075 UK	0 0K		0.00 0K	0.00 0K	
PT	1,873 ok 885 ok	18,125 ok 18,125 ok	1164 ok 810 ok	0.43 ok 0.41 ok	0.18 ok 0.15 ok	
Exit Point	885 ok 0 ok	0 ok 0 ok	810 ok 0 ok	0.01 ok 0.00 ok	0.01 ok 0.00 ok	

Little River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

20

CORE BARREL SAMPLE

- ROCK QUALITY DESIGNATION (PERCENT)

- CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS OWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 5. CURVE RADIUS: NO LESS THAN 2,400 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

- 20

- 10

Little River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information				
Project : Dominion Atlantic Coast Pipeline	User :	AC	М	
Crossing : 36" Little River Crossing Date : 9/29/20				
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger	
and 22' deeper than design with a 2,400' radius) with 12 ppg r	mud with BC			
Line Pipe Properties				
Pipe Outside Diameter =	36.000	in		
Wall Thickness =	0.741	in		
Specified Minimum Yield Strength =	70,000	psi		
Young's Modulus =	2.9E+07	psi		
Moment of Inertia =	12755.22	in ⁴		
Pipe Face Surface Area =	82.08	in ²		
Diameter to Wall Thickness Ratio, D/t =	49			
Poisson's Ratio =	0.3			
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F		
Pipe Weight in Air =	279.04	lb/ft		
Pipe Interior Volume =	6.50	ft ³ /ft		
Pipe Exterior Volume =	7.07	ft ³ /ft		
HDD Installation Properties				
Drilling Mud Density =	12.0	ppg		
=	89.8	lb/ft ³		
Ballast Density =	62.4	lb/ft ³		
Coefficient of Soil Friction =	0.30			
Fluid Drag Coefficient = 0.025 psi				
Ballast Weight = 405.51 lb/ft				
Displaced Mud Weight =	634.48	lb/ft		
Installation Stress Limits				
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi		
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No	
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,517	psi	No	
For D/t > 3,000,000/SMYS and <= 300, F_{b} =	45,639	psi	Yes	
Allowable Bending Stress, F_b =	45,639	psi		
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi		
For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,812	psi	Yes	
For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, $F_{hc} = 33,446$ psi			No	
For $F_{he} > 1.6*SMYS$ and <= 6.2*SMYS, F_{hc} =	For F _{he} > 1.6*SMYS and <= 6.2*SMYS, F _{hc} = 12,027 psi			
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No	
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi		
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi		

Little River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

Little River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties				
Based on profile design entered in 'Step 2, Drilled Path Input'.					
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/f Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d =$ psitBallast Weight / ft Pipe, $W_b =$ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 634.5lb(If Submerged)Above Ground Load =0lb				
Exit Tangent - S	Summary of Pulling Load Calculations				
Segment Length, L = 316.7 ft Exit Angle, θ = 10.0 °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft				
Frictional Drag = $W_e L \mu \cos\theta = 4,684$ lb					
Fluidic Drag = 12 π D L C _d = 10,744 Ib					
Axial Segment Weight = $W_e L \sin\theta = -2,753$ lb	Negative value indicates axial weight applied in direction of installation				
Pulling Load on Exit Tangent = 12,675 Ib					
Exit Sag Bend -	Summary of Pulling Load Calculations				
Segment Length, L =418.9ftSegment Angle with Horizontal, θ =-10.0°Deflection Angle, α =-5.0°	Average Tension, T =20,188IbRadius of Curvature, R =2,400ftEffective Weight, $W_e = W + W_b - W_m =$ 50.1Ib/ft				
h = R [1 - cos(α/2)] = 9.13 ft	j = [(E I) / T] ^{1/2} = 4,281				
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 4.0E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 126.93				
U = (12 L) / j = 1.17	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 4,402 Ib				
Bending Frictional Drag = $2 \mu N = 2,641$ lb					
Fluidic Drag = 12 π D L C _d = 14,212 lb					
Axial Segment Weight = $W_e L \sin\theta = -1,828$ lb	Negative value indicates axial weight applied in direction of installation				
Pulling Load on Exit Sag Bend = 15,025 Ib Total Pulling Load = 27,701 Ib					
Bottom Tangent -	Summary of Pulling Load Calculations				
Segment Length, L = 0.0 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft				
Frictional Drag = $W_e L \mu = 1$ Ib					
Fluidic Drag = 12 π D L C _d = 1 Ib					
Axial Segment Weight = $W_e L \sin \theta = 0$ lb					
Pulling Load on Bottom Tangent =2IbTotal Pulling Load =27,703Ib					

Little River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Entry Sag Bend - Summary of Pulling Load Calculations					
Segment Angle	egment Length, L = with Horizontal, θ = beflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radii Effective Weight, V	verage Tension, T = us of Curvature, R = / _e = W + W _b - W _m =	37,595 lb 2,400 ft 50.1 lb/ft	
h	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	3,137	
Y = [18 (L) ²] - [(j)	$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 6.7E + 05 \qquad X = (3 L) - [(j / 2) \tanh(U/2)] = 214.10$					
	U = (12 L) / j = 1.60 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 6,240 lb					
Bending Fricti	onal Drag = 2 μ N =[3,744 lb				
Fluidic D	rag = 12 π D L C _d =[14,212 lb				
Axial Segment W	/eight = $W_e L \sin \theta = [$	1,828 lb				
Pulling Load on	Entry Sag Bend =	19,784 lb				
	tai Pulling Load =	47,407 ID				
		Entry Tangent - S	ummary of Pulling	Load Calculations		
s	egment Length, L = Entry Angle, θ =	345.7 ft 10.0 °	Effective Weight, W	$V_{e} = W + W_{b} - W_{m} =$	50.1 lb/ft	
Frictional Dr Fluidic D	Frictional Drag = $W_e L \mu \cos\theta = 5,114$ lb Fluidic Drag = 12 π D L C _d = 11.729 lb					
Axial Segment W	/eight = W _e L sinθ =	3,006 lb				
Pulling Load o To	n Entry Tangent = tal Pulling Load =	19,849 lb 67,335 lb				
		Summary of Cal	culated Stress vs.	Allowable Stress		
			External Hoop	Combined Tensile	Combined Tensile,	
	Tensile Stress	Bending Stress	Stress	& Bending	Bending & Ext. Hoop	
Entry Point	820 ok	0 ok	0 ok	0.01 ok	0.00 ok	
PC	579 OK	0 ок	254 OK	0.01 OK	0.00 OK	
	579 ok 338 ok	18,125 ok 18,125 ok	254 ok 422 ok	0.41 ok 0.40 ok	0.12 ok 0.12 ok	
PT	338 ok	0 ok	422 ok	0.01 ok	0.00 ok	
	337 ok	0 ok	422 ok	0.01 ok	0.00 ok	
PC	007 -1-	10 105	400 -1	0.40	0.40	
	337 OK 154 ok	18,125 OK	422 OK	0.40 OK	0.12 OK	
PT		10,120 01		0.40	0.11	
	154 ok	0 ok	254 ok	0.00 ok	0.00 ok	
Exit Point	0 ok	0 ok	0 ok	0.00 ok	0.00 ok	

Little River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information					
Project :	Dominion Atlantic Coast Pipeline	User :	ACI	М		
Crossing :	36" Little River Crossing Date : 9/29/201					
Comments ·	Installation stress analysis based on worst-case drilled path p	er tolerances	(40' lor	nger		
	and 22' deeper than design with a 2,400' radius) with 12 ppg r	nud and no B	SC			
	Line Pipe Properties					
	Pipe Outside Diameter =	36.000	in			
	Wall Thickness =	0.741	in			
	Specified Minimum Yield Strength =	70,000	psi			
	Young's Modulus =	2.9E+07	psi			
	Moment of Inertia =	12755.22	in ⁴			
	Pipe Face Surface Area =	82.08	in ²			
	Diameter to Wall Thickness Ratio, D/t =	49				
	Poisson's Ratio =	0.3				
	Coefficient of Thermal Expansion = 6.5E-06 in/in/°F					
	Pipe Weight in Air = 279.04 lb/ft					
Pipe Interior Volume = 6.50 ft ³ /ft						
	Pipe Exterior Volume =					
HDD Installation Properties						
	Drilling Mud Density =	12.0	ppg			
	=	89.8	lb/ft ³			
	Ballast Density =	62.4	lb/ft ³			
	Coefficient of Soil Friction = 0.30					
	Fluid Drag Coefficient = 0.025 psi					
Ballast Weight = 405.51 lb/ft			lb/ft			
	Displaced Mud Weight =	634.48	lb/ft			
	Installation Stress Limits					
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi			
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No		
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No		
	For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes		
	Allowable Bending Stress, F _b =	45,639	psi			
	Elastic Hoop Buckling Stress, F _{he} =	10,812	psi			
	For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes		
	For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, $F_{hc} = 33,446$ psi			No		
	For $F_{he} > 1.6^*SMYS$ and <= 6.2*SMYS, $F_{hc} = 12,027$ psi					
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No		
	Critical Hoop Buckling Stress, F _{hc} =	10,812	psi			
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi			

Little River R0 Installation Stress Analysis (worst-case).xlsm

Little River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties			
Based on profile design entered in 'Step 2, Drilled Path Input'.				
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/f Coefficient of Soil Friction, μ = 0.30	Fluid Drag Coefficient, $C_d = $ 0.025psiBallast Weight / ft Pipe, $W_b = $ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 634.5lb(If Submerged)Above Ground Load = 0lb			
Exit Tangent - S	ummary of Pulling Load Calculations			
Segment Length, L = 316.7 ft Exit Angle, θ = 10.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft			
Frictional Drag = $W_e L \mu \cos\theta = 33,254$ lb				
Fluidic Drag = 12 π D L C _d = 10,744 Ib				
Axial Segment Weight = $W_e L \sin\theta = 19,545$ lb				
Pulling Load on Exit Tangent = 63,543 Ib				
Exit Sag Bend -	Summary of Pulling Load Calculations			
Segment Length, L =418.9ftSegment Angle with Horizontal, θ =-10.0°Deflection Angle, α =-5.0°	Average Tension, T = $112,726$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft			
h = R [1 - cos(α/2)] = 9.13 ft	j = [(E I) / T] ^{1/2} = 1,811			
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 1.4E+06$	X = (3 L) - [(j / 2) tanh(U/2)] = 457.23			
U = (12 L) / j =	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 118,626 lb			
Bending Frictional Drag = $2 \mu N = 71,176$ lb				
Fluidic Drag = $12 \pi D L C_d = 14,212$ lb				
Axial Segment Weight = $W_e L \sin \theta = 12,976$ lb				
Pulling Load on Exit Sag Bend = 98,364 Ib Total Pulling Load = 161,908 Ib				
Bottom Tangent -	Summary of Pulling Load Calculations			
Segment Length, L = 0.0 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft			
Frictional Drag = W _e L µ = 5 Ib				
Fluidic Drag = 12 π D L C _d = 1 Ib				
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib				
Pulling Load on Bottom Tangent = 6 Ib Total Pulling Load = 161,914 Ib				
Little River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Entry Sag Bend - Summary of Pulling Load Calculations							
Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	418.9 ft 10.0 ° 5.0 °	A Radii Effective Weight, V	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	200,598 lb 2,400 ft -355.4 lb/ft			
h	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	1,358			
Y = [18 (L) ²] - [(j)	² (1 - cosh(U/2) ⁻¹] =	1.9E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	610.38			
	U = (12 L) / j =	3.70	N = [(T h) - $W_e \cos\theta$	(Y/144)] / (X / 12) =	126,889 lb			
Bending Friction	Bending Frictional Drag = 2 μ N = 76,133 Ib							
Fluidic Drag = 12 π D L C _d = 14,212 lb								
Axial Segment W	Axial Segment Weight = $W_e L \sin\theta = -12,976$ b Negative value indicates axial weight applied in direction of installation							
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	77,369 lb 239,283 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
S	Segment Length, L = 345.7 ft Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft Entry Angle, $\theta = 10.0$ °							
Frictional Dr Fluidic Dr Axial Segment W Pulling Load o r	Frictional Drag = $W_e L \mu \cos\theta = 36,302$ Ib Fluidic Drag = $12 \pi D L C_d = 11,729$ Ib Axial Segment Weight = $W_e L \sin\theta = -21,337$ Ib Negative value indicates axial weight applied in direction of installation							
То	tal Pulling Load =	265,977 lb						
		Summary of Cal	Iculated Stress vs.	Allowable Stress				
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	3,240 ok	0 ok	0 ok	0.05 ok	0.00 ok			
PC	2,915 OK	0 ок	833 OK	0.05 OK	0.02 ок			
	2,915 ok 1,973 ok	18,125 ok 18,125 ok	833 ok 1385 ok	0.44 ok 0.43 ok	0.17 ok 0.20 ok			
PT	1973 ok	0 04	1385 ok	0.03 ok	0.04 ok			
	1,973 ok	0 ok	1385 ok	0.03 ok	0.04 ok			
PC								
PT	1,973 ok 774 ok	18,125 ok 18,125 ok	1385 ok 833 ok	0.43 ok 0.41 ok	0.20 ok 0.15 ok			
	774 ok	0 ok	833 ok	0.01 ok	0.01 ok			
Exit Point	0 ok	0 ok	0 ok	0.00 ok	0.00 ok			

Cape Fear River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, with buoyancy control (4 pages)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

GEDTECHNICAL LEGEND

BORING LOCATION

SPLIT SPOON SAMPLE

53 1 23 - PENETRATION RESISTANCE IN BLOWS PER FOOT FUR A 140 POUND HAMMER FALLING 30 INCHES PERCENTAGE DF GRAVEL BY WEIGHT FUR SAMPLES CONTAINING GRAVEL

SHELBY TUBE SAMPLE

53 II

PERCENTAGE OF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL

- 2. THE LETTER 'N' TO THE LEFT OF A SAMPLE INDICATES THAT NO GRAVEL WAS DBSERVED IN THE SAMPLE. THE LETTERS 'N' INDICATE THAT GRAVEL WAS DBSERVED BUT NO GRADATION TEST WAS PERFORMED.
- 3. THE GEDTECHNICAL DATA IS UNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE ORIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS OWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 1. ENTRY POINT: UP TO 10 FEET FORWARD OR BACK FROM THE DESIGNED ENTRY POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 2. EXIT POINT: UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT POINT, UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 3. ELEVATION: UP TO 5 FEET ABOVE AND 20 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS[;] NO LESS THAN 2,400 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)
- 2.

CONTRACTOR SHALL UNDERTAKE THE FOLLOWING STEPS PRIOR TO COMMENCING DRILLING OPERATIONS.

- 20

- 10

1. CONTACT THE UTILITY LOCATION/NOTIFICATION SERVICE FOR THE CONSTRUCTION AREA.

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

Cape Fear River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
			NI
Project : Dominion Atlantic Coast Pipeline	User :	KM	N
Crossing : 36" Cape Fear River Crossing	Date :	(122/2	2016
Comments : Installation stress analysis based on worst-case drilled path p	er tolerances	(40' 101	nger
and 18 deeper than design with a 2,400 radius) with 12 ppg l			
Line Pipe Properties			
Pipe Outside Diameter =	36.000	in	
Wall Thickness =	0.741	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	12755.22	in ⁴	
Pipe Face Surface Area =	82.08	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	279.04	lb/ft	
Pipe Interior Volume =	6.50	ft ³ /ft	
Pipe Exterior Volume =	7.07	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction =	0.30		
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	405.51	lb/ft	
Displaced Mud Weight =	634.48	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F _t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No
For D/t > 3,000,000/SMYS and <= 300, F _b =	45,639	psi	Yes
Allowable Bending Stress, F _b =	45,639	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi	
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No
For $F_{he} > 1.6*SMYS$ and <= 6.2*SMYS, F_{hc} =	12,027	psi	No
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,208	psi	

Cape Fear River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

P.C.

P.C.

P.T.

Exit Point

Cape Fear River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties							
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.						
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 lb/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = $ 0.025psitBallast Weight / ft Pipe, $W_b = $ 405.5lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 634.5lb(If Submerged)Above Ground Load = 0lb						
Exit Tangent - S	Summary of Pulling Load Calculations						
Segment Length, L = 618.0 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft						
Frictional Drag = $W_e L \mu \cos\theta = 9,193$ lb							
Fluidic Drag = 12π D L C _d = 20,969 lb							
Axial Segment Weight = $W_e L \sin\theta = -4,307$ lb	Negative value indicates axial weight applied in direction of installation						
Pulling Load on Exit Tangent = 25,856 Ib							
Exit Sag Bend -	Summary of Pulling Load Calculations						
Segment Length, L = 335.1 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T = $34,435$ lb Radius of Curvature, R = $2,400$ ft Effective Weight, W _e = W + W _b - W _m = 50.1 lb/ft						
h = R [1 - $\cos(\alpha/2)$] = 5.85 ft	j = [(E I) / T] ^{1/2} = 3,277						
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.7E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 109.64						
U = (12 L) / j = 1.23	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 11,599 Ib						
Bending Frictional Drag = $2 \mu N = 6,960$ lb							
Fluidic Drag = 12 m D L C_{d} = 11,370 lb							
Axial Segment Weight = $W_e L \sin \theta = -1,170$ lb	Negative value indicates axial weight applied in direction of installation						
Pulling Load on Exit Sag Bend = 17,159 lb Total Pulling Load = 43,015 lb							
Bottom Tangent	- Summary of Pulling Load Calculations						
Segment Length, L = 0.0 ft	Effective Weight, $W_e = W + W_b - W_m = 50.1$ lb/ft						
Frictional Drag = W _e L µ = 1 Ib							
Fluidic Drag = $12 \pi D L C_d = 1$ lb							
Axial Segment Weight = $W_e L \sin \theta = 0$ lb							
Pulling Load on Bottom Tangent = 2 Ib Total Pulling Load = 43,016 Ib							

Cape Fear River R0 Installation Stress Analysis (worst-case) - with buoyancy.xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Say Bend - Summary of Pulling Load Calculations							
S Segment Angle D	egment Length, L = with Horizontal, θ = Deflection Angle, $α$ =	418.9 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	53,408 lb 2,400 ft 50.1 lb/ft		
h	n = R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	2,632		
Y = [18 (L) ²] - [(j) ² (1 - cosh(U/2) ⁻¹] =	8.8E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	280.22		
	U = (12 L) / j =	1.91	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	7,905 lb		
Bending Fricti	onal Drag = 2 μ N =	4,743 lb					
Fluidic D	rag = 12 π D L C _d =	14,212 lb					
Axial Segment W	/eight = $W_e L \sin\theta$ =	1,828 lb					
Pulling Load on	Entry Sag Bend =	20,783 lb					
10	tal Pulling Load =	63,800 ID					
		Entry Tangent - S	ummary of Pulling	Load Calculations			
s	egment Length, L = Entry Angle, θ =	335.9 ft 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	50.1 lb/ft		
Frictional D	rag = W _e L μ cosθ =	4,969 Ib					
Fluidic D	rag = 12 π D L C _d =	11,397 lb					
Axial Segment W	/eight = $W_e L \sin \theta$ =	2,921 lb					
Pulling Load o To	n Entry Tangent = otal Pulling Load =	19,286 lb 83,086 lb					
		Summary of Cal	culated Stress vs.	Allowable Stress			
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop		
Entry Point	1,012 ok	0 ok	0 ok	0.02 ok	0.00 ok		
PC	777_ok	0 ok	269 ok	0.01 ok	0.00 ok		
	777 ok 524 ok	18,125 ok 18,125 ok	269 ok 437 ok	0.41 ok 0.41 ok	0.12 ok 0.12 ok		
PT	524 ok	0 ok	437 ok	0.01 ok	0.00 ok		
PC	524 ok	0 ok	437 ok	0.01 ok	0.00 ok		
PT	524 ok 315 ok	18,125 ok 18,125 ok	437 ok 330 ok	0.41 ok 0.40 ok	0.12 ok 0.12 ok		
Exit Point	315 ok 0 ok	0 ok 0 ok	330 ok -67 ok	0.01 ok 0.00 ok	0.00 ok 0.00 ok		

Cape Fear River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	AC	М
Crossing : 36" Cape Fear River Crossing	Date :	6/15/2	2016
Comments . Installation stress analysis based on worst-case drilled path p	er tolerances	(40' loi	nger
and 18' deeper than design with a 2,400' radius) with 12 ppg	mud and no E	BC	
Line Pipe Properties			
Pipe Outside Diameter =	36.000	in	
Wall Thickness =	0.741	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	12755.22	in ⁴	
Pipe Face Surface Area =	82.08	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	279.04	lb/ft	
Pipe Interior Volume =	6.50	ft ³ /ft	
Pipe Exterior Volume =	7.07	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction =	0.30		
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	405.51	lb/ft	
Displaced Mud Weight =	634.48	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,517	psi	No
For D/t > $3,000,000/SMYS$ and <= $300, F_b$ =	45,639	psi	Yes
Allowable Bending Stress, F _b =	45,639	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,812	psi	
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	Yes
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,446	psi	No
For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, F_{hc} =	12,027	psi	No
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,812	psi	
Allowable Hoop Buckling Stress, Fhc/1.5 =	7,208	psi	

Cape Fear River R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Grade

Points

Cape Fear River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties						
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.					
Pipe Diameter, D = 36.000 in PIpe Weight, W = 279.0 Ib/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = 0.025$ psitBallast Weight / ft Pipe, $W_b = 405.5$ lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = 634.5$ lb(If Submerged)Above Ground Load = 0lb					
Exit Tangent - S	Summary of Pulling Load Calculations					
Segment Length, L = 618.0 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft					
Frictional Drag = $W_e L \mu \cos\theta = 65,261$ lb						
Fluidic Drag = $12 \pi D L C_d = 20,969$ lb						
Axial Segment Weight = $W_e L \sin\theta = 30,573$ lb						
Pulling Load on Exit Tangent = 116,803 Ib						
Exit Sag Bend -	Summary of Pulling Load Calculations					
Segment Length, L =335.1ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = 158,378 lb Radius of Curvature, R = 2,400 ft Effective Weight, W _e = W + W _b - W _m = -355.4 lb/ft					
h = R [1 - $\cos(\alpha/2)$] = 5.85 ft	j = [(E I) / T] ^{1/2} = 1,528					
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 8.5E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 343.81					
U = (12 L) / j = 2.63	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 105,786 lb					
Bending Frictional Drag = 2 μ N = 63,472 Ib						
Fluidic Drag = $12 \pi D L C_d = 11,370$ lb						
Axial Segment Weight = $W_e L \sin\theta = 8,309$ lb						
Pulling Load on Exit Sag Bend =83,150IbTotal Pulling Load =199,953Ib						
Bottom Tangent -	Summary of Pulling Load Calculations					
Segment Length, L = 0.0 ft	Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft					
Frictional Drag = W _e L μ = 4 Ib						
Fluidic Drag = $12 \pi D L C_d = 1$ Ib						
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib						
Pulling Load on Bottom Tangent = 5 Ib Total Pulling Load = 199,957 Ib						

Cape Fear River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
Segment Angle o De	egment Length, L = with Horizontal, θ = eflection Angle, α =	418.9 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	239,746 lb 2,400 ft -355.4 lb/ft			
h	= R [1 - cos(α/2)] =	9.13 ft		$j = [(E I) / T]^{1/2} =$	1,242			
$Y = [18 (L)^2] - [(j)^2]$	² (1 - cosh(U/2) ⁻¹] =	2.0E+06	X = (3 L) -	[(j / 2) tanh(U/2)] =	656.91			
	U = (12 L) / j = 4.05 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 130,568 lb							
Bending Frictional Drag = 2 μ N = 78,341 Ib								
Fluidic Dr	ag = 12 π D L C _d =	14,212 lb						
Axial Segment W	eight = $W_e L \sin \theta$ =	-12,976 lb	Negative value indicate	es axial weight applied	n direction of installation			
Pulling Load on I Tot	Entry Sag Bend = al Pulling Load =	79,577 lb 279,534 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
Se	Segment Length, L = 335.9 ft Effective Weight, $W_e = W + W_b - W_m = -355.4$ lb/ft Entry Angle, $\theta = 10.0$ °							
Frictional Dra	ag = W _e L μ cosθ = ag = 12 π D L C _d =	35,274 lb						
Axial Segment Wo Pulling Load or Tot	eight = W _e L sinθ = n Entry Tangent = tal Pulling Load =	-20,732 lb 25,938 lb 305,472 lb	Negative value indicate	es axial weight applied i	n direction of installation			
		Summary of Cal	culated Stress vs.	Allowable Stress				
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	3,722 ok	0 ok	0 ok	0.06 ok	0.00 ok			
PC	3,406 OK	0 ок 18.125 ок	883 OK	0.05 OK	0.18 ok			
PT	2,436 ok	18,125 ok	1435 ok	0.44 ok	0.21 ok			
	2,436 ok 2,436 ok	0 ok 0 ok	1435 ok 1435 ok	0.04 ok 0.04 ok	0.04 ok 0.04 ok			
PC	2,436 ok 1,423 ok	18,125 ok 18,125 ok	1435 ok 1082 ok	0.44 ok 0.42 ok	0.21 ok 0.17 ok			
Exit Point	1,423 ok 0 ok	0 ok 0 ok	1082 ok -221 ok	0.02 ok 0.00 ok	0.02 ok 0.00 ok			

Nottaway River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE DRIGINAL BORINGS MAY BE DDINE TO CHARACTERIZE THE SDIL CONDITIONS, HOWEVER, COMPANY DDES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 1. DRILLED PATH STATIONING IS IN FEET BY HARIZANTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 3. ELEVATION: UP TO 5 FEET ABOVE AND 30 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

2.

З,

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

10

MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

		•	2				REVISION	-
PROJECT	E PROJECT ottaway rive drilling						DRAWING LABEL	NOTTAWAY
PIPELINE	DDOFTE	ECHONALL			SCALE	SHOWN FOR D-SIZED PLOT		
OAST	T AN ANT		TAL DID		VIRGINIA		APPROVED	JSP
NTIC C		T ANI 130			TON COUNTY		CHECKED	JSP
ATLA		INCH D		110	SOUTHAMP		DATE	02/04/16
		ſ	1		LOCATION		DRAWN	KMN
							ISP	PP.
							, AMC	HK'D A
							ACM D	BY CI
							16 UPDATE HDD ALIGNMENT & BORING LOCATIONS	REVISION DESCRIPTION
							07/13/	. DATE
							-	NC
		Jettrey S. Fuckett, F.E.	Consulting Engineer				2424 East 21st Street	Suite 510 Tulsa, Oklahoma 74114
	Γ	Doi	PRO mi	DJE ni	сті on	10	э. 15	08
		7.	м Р		POS	ST) -	33

Nottaway River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information			
Project : Dominion Atlantic Coast Pipeline	User :	JSI	Р
Crossing : 20" Nottaway River Crossing	Date :	2/4/20	016
Comments I Installation stress analysis based on worst-case drilled path p	er tolerances	(40' loi	nger
and 30' deeper than design with a 1,350' radius) with 12 ppg	mud and no E	3C	
Line Pipe Properties			
Pipe Outside Diameter =	20.000	in	
Wall Thickness =	0.411	in	
Specified Minimum Yield Strength =	70,000	psi	
Young's Modulus =	2.9E+07	psi	
Moment of Inertia =	1213.22	in ⁴	
Pipe Face Surface Area =	25.29	in ²	
Diameter to Wall Thickness Ratio, D/t =	49		
Poisson's Ratio =	0.3		
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F	
Pipe Weight in Air =	85.99	lb/ft	
Pipe Interior Volume =	2.01	ft ³ /ft	
Pipe Exterior Volume =	2.18	ft ³ /ft	
HDD Installation Properties			
Drilling Mud Density =	12.0	ppg	
=	89.8	lb/ft ³	
Ballast Density =	62.4	lb/ft ³	
Coefficient of Soil Friction =	0.30		
Fluid Drag Coefficient =	0.025	psi	
Ballast Weight =	125.18	lb/ft	
Displaced Mud Weight =	195.83	lb/ft	
Installation Stress Limits			
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi	
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,493	psi	No
For D/t > 3,000,000/SMYS and <= 300, F _b =	45,631	psi	Yes
Allowable Bending Stress, F _b =	45,631	psi	
Elastic Hoop Buckling Stress, F _{he} =	10,777	psi	
For F _{he} <= 0.55*SMYS, Critical Hoop Buckling Stress, F _{hc} =	10,777	psi	Yes
For $F_{he} > 0.55^*SMYS$ and <= 1.6*SMYS, F_{hc} =	33,440	psi	No
For $F_{he} > 1.6$ *SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No
For $F_{he} > 6.2^*SMYS$, $F_{hc} =$	70,000	psi	No
Critical Hoop Buckling Stress, F _{hc} =	10,777	psi	
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi	

Nottaway River R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Nottaway River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties							
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.						
Pipe Diameter, D = 20.000 in Plpe Weight, W = 86.0 lb/ Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = $ psiftBallast Weight / ft Pipe, $W_b = $ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 195.8lb(If Submerged)Above Ground Load = 0lb						
Exit Tangent -	Summary of Pulling Load Calculations						
Segment Length, L = 715.1 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = $ Ib/ft						
Frictional Drag = $W_e L \mu \cos\theta = 23,334$ lb							
Fluidic Drag = $12 \pi D L C_d = 13,479$ lb							
Axial Segment Weight = $W_e L \sin \theta = 10,931$ lb							
Pulling Load on Exit Tangent = 47,744 Ib							
Exit Sag Bend -	Summary of Pulling Load Calculations						
Segment Length, L = 188.5 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T =57,218IbRadius of Curvature, R =1,350ftEffective Weight, $W_e = W + W_b - W_m =$ -109.8Ib/ft						
h = R [1 - $\cos(\alpha/2)$] = 3.29 ft	$j = [(E I) / T]^{1/2} = 784$						
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 3.0E + 05$	X = (3 L) - [(j / 2) tanh(U/2)] = 214.91						
U = (12 L) / j = 2.88	N = [(T h) - $W_e \cos\theta (Y/144)$] / (X / 12) 23,252 lb						
Bending Frictional Drag = $2 \mu N = 13,951$ lb							
Fluidic Drag = 12 m D L C_{d} = 3,553 lb							
Axial Segment Weight = $W_e L \sin \theta = 1,444$ lb							
Pulling Load on Exit Sag Bend = 18,949 Ib Total Pulling Load = 66,693 Ib							
Bottom Tangent	- Summary of Pulling Load Calculations						
Segment Length, L = 129.2 ft	Effective Weight, $W_e = W + W_b - W_m = $ Ib/ft						
Frictional Drag = $W_e L \mu = 4,257$ lb							
Fluidic Drag = 12 m D L C_{d} = 2,435 lb							
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib							
Pulling Load on Bottom Tangent = 6,692 lb Total Pulling Load = 73,384 lb							

Nottaway River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	235.6 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	83,129 lb 1,350 ft -109.8 lb/ft			
h	= R [1 - cos(α/2)] =	5.14 ft		$j = [(E I) / T]^{1/2} =$	651			
Y = [18 (L) ²] - [(j)	² (1 - cosh(U/2) ⁻¹] =	6.7E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	389.90			
	U = (12 L) / j = 4.35 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 28,840 lb							
Bending Friction	onal Drag = 2 μ N =	17,304 lb						
Fluidic Di	$rag = 12 \pi D L C_d =$	4,441 lb						
Axial Segment W	eight = $W_e L \sin \theta$ =	-2,256 lb	Negative value indicate	es axial weight applied	in direction of installatior	1		
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	19,490 lb 92,874 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
S	Segment Length, L = 465.9 ft Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft Entry Angle, θ = 10.0 °							
Frictional Dr Fluidic Dr	ag = W _e L μ cosθ = ag = 12 π D L C _d =	15,120 lb						
Axial Segment W Pulling Load of To	eight = W _e L sinθ = n Entry Tangent = tal Pulling Load =	-8,887 Ib 15,016 Ib 107,890 Ib	Negative value indicate	es axial weight applied	in direction of installatior	1		
		Summary of Cal	culated Stress vs.	Allowable Stress				
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	4,266 ok 3,672 ok	0 ok 0 ok	0 ok 1227 ok	0.07 ok 0.06 ok	0.01 ok 0.04 ok			
PC	3,672 ok 2,901 ok	17,901 ok 17,901 ok	1227 ok 1538 ok	0.45 ok 0.44 ok	0.21 ok 0.22 ok			
PC	2,901 ok 2,637 ok	0 ok 0 ok	1538 ok 1538 ok	0.05 ok 0.04 ok	0.05 ok 0.05 ok			
PT	2,637 ok 1,888 ok	17,901 ok 17,901 ok	1538 ok 1339 ok	0.43 ok 0.42 ok	0.22 ok 0.19 ok			
Exit Point	1,888 ok 0 ok	0 ok 0 ok	1339 ok -170 ok	0.03 ok 0.00 ok	0.04 ok 0.00 ok			

Blackwater River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- B BORING LOCATION
- SPLIT SPOON SAMPLE
- 53 A 23 PENETRATION RESISTANCE IN BLOWS PER FOOT FUR A 140 PULND HAMMER FALLING 30 INCHES PERCENTAGE DF GRAVEL BY WEIGHT FUR SAMPLES CUNTAINING GRAVEL
- SHELBY TUBE SAMPLE
- 53 IL
- PERCENTAGE DF GRAVEL BY WEIGHT FDR SAMPLES CONTAINING GRAVEL

- DECEMBER 2015 FOR MORE DETAILED SUBSURFACE INFORMATION.
- 2. THE LETTER 'N' TO THE LEFT OF A SPLIT SPOON SAMPLE INDICATES THAT NO GRAVEL WAS OBSERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS OBSERVED BUT NO GRADATION TEST WAS PERFORMED
- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOLIL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE CUMPATIONS THE CONTRACTOR CONTRACTOR CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS OWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 1. ENTRY POINT; UP TO 10 FEET FORWARD OR BACK FROM THE DESIGNED ENTRY POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 2. EXIT POINT: UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT POINT, UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 3. ELEVATION: UP TO 5 FEET ABOVE AND 30 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

2.

PROTECTION OF EXISTING FACILITIES

CONTRACTOR SHALL UNDERTAKE THE FOLLOWING STEPS PRIOR TO COMMENCING DRILLING OPERATIONS.

1. CONTACT THE UTILITY LOCATION/NOTIFICATION SERVICE FOR THE CONSTRUCTION AREA,

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

ATLANTIC COAST PIPELINE PROJECT	PLAN AND PROFILE	20 INCU DIDDI INE CDORGINC OF THE DI ACTWATED DIVED	20-INCITETERINE CROSSING OF THE BLACKWATEN MYEN DV HODIZONFAT DIDECTIONAT DDITTINC	DUITING THOUSE AND THE DUILED TO THE DUILED	OCATION: SOUTHAMPTON & SUFFOLK COUNTIES, VIRGINIA	DRAWN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	KMN 02/09/16 DMP JSP SHOWN FOR BLACKWATER 1
						JSP	O APP.
						A DMP	CHKI
						1/16 UPDATE HDD ALIGNMENT BASED ON SURVEYED CL ACM	IE REVISION DESCRIPTION BY
						04/28	. DA7
						-	NO
		Jerrey 5. ruckett, r.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	D	00	PRO mi	oje ni	ст N оп [\]	10. \15	08
	A		м Р	іе З	РОS -(т)З	39

Blackwater River R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information					
Project : [Dominion Atlantic Coast Pipeline	User :	AC	М	
Crossing : 2	20" Blackwater River Crossing	Date :	6/15/2	2016	
Comments · I	nstallation stress analysis based on worst-case drilled path p	er tolerances	(40' loi	nger	
Comments .	nud and no E	3C			
	Line Pipe Properties				
	Pipe Outside Diameter =	20.000	in		
	Wall Thickness =	0.411	in		
	Specified Minimum Yield Strength =	70,000	psi		
	Young's Modulus =	2.9E+07	psi		
	Moment of Inertia =	1213.22	in ⁴		
	Pipe Face Surface Area =	25.29	in ²		
	Diameter to Wall Thickness Ratio, D/t =	49			
	Poisson's Ratio =	0.3			
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F		
	Pipe Weight in Air =	85.99	lb/ft		
	Pipe Interior Volume =	2.01	ft ³ /ft		
	Pipe Exterior Volume =	2.18	ft ³ /ft		
	HDD Installation Properties				
	Drilling Mud Density =	12.0	ppg		
	=	89.8	lb/ft ³		
	Ballast Density =	62.4	lb/ft ³		
	Coefficient of Soil Friction =	0.30			
	Fluid Drag Coefficient =	0.025	psi		
	Ballast Weight =	125.18	lb/ft		
	Displaced Mud Weight =	195.83	lb/ft		
	Installation Stress Limits				
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi		
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No	
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No	
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes	
	Allowable Bending Stress, F_b =	45,631	psi		
	Elastic Hoop Buckling Stress, F _{he} =	10,777	psi		
	For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,777	psi	Yes	
	For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No	
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No	
	For $F_{he} > 6.2*SMYS$, $F_{hc} =$	70,000	psi	No	
	Critical Hoop Buckling Stress, F _{hc} =	10,777	psi		
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi		

Blackwater River R1 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Blackwater River R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties				
Based on profile design entered in 'Step 2, Drilled Path Input'.				
Pipe Diameter, D = 20.000 in PIpe Weight, W = 86.0 lb/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d =$ psitBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb			
Exit Tangent - S	ummary of Pulling Load Calculations			
Segment Length, L = 682.4 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft			
Frictional Drag = $W_e L \mu \cos\theta = 22,268$ lb				
Fluidic Drag = $12 \pi D L C_d = 12,863$ lb				
Axial Segment Weight = $W_e L \sin\theta = 10,432$ lb				
Pulling Load on Exit Tangent = 45,562 Ib				
Exit Sag Bend -	Summary of Pulling Load Calculations			
Segment Length, L =188.5ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = 54,983 Ib Radius of Curvature, R = 1,350 ft Effective Weight, $W_e = W + W_b - W_m = -109.8$ Ib/ft			
h = R [1 - $\cos(\alpha/2)$] = 3.29 ft	j = [(E I) / T] ^{1/2} = 800			
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.9E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 210.19			
U = (12 L) / j =2.83	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 23,074 lb			
Bending Frictional Drag = $2 \mu N =$ 13,844 Ib				
Fluidic Drag = $12 \pi D L C_d = 3,553$ lb				
Axial Segment Weight = $W_e L \sin\theta = 1,444$ lb				
Pulling Load on Exit Sag Bend = 18,842 Ib Total Pulling Load = 64,404 Ib				
Bottom Tangent -	Summary of Pulling Load Calculations			
Segment Length, L = 760.9 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft			
Frictional Drag = W _e L μ = 25,075 Ib				
Fluidic Drag = 12π D L C _d = 14,344 Ib				
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib				
Pulling Load on Bottom Tangent = 39,418 Ib Total Pulling Load = 103,822 Ib				

Blackwater River R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
Si Segment Angle D	egment Length, L = with Horizontal, θ = eflection Angle, α =	235.6 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	114,477 lb 1,350 ft -109.8 lb/ft			
h = R [1 - $\cos(\alpha/2)$] = 5.14 ft j = [(E I) / T] ^{1/2} = 554								
Y = [18 (L) ²] - [(j)	$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = \boxed{7.4E+05} \qquad X = (3 L) - [(j / 2) \tanh(U/2)] = \boxed{433.03}$							
	U = (12 L) / j = 5.10 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 31,873 Ib							
Bending Friction	Bending Frictional Drag = 2 μ N = 19,124 Ib							
Fluidic Di	rag = 12 π D L C _d =	4,441 lb						
Axial Segment W	Axial Segment Weight = $W_e L \sin\theta = -2,256$ b Negative value indicates axial weight applied in direction of installation							
Pulling Load on To	Pulling Load on Entry Sag Bend =21,309IbTotal Pulling Load =125,132Ib							
		Entry Tangent - Se	ummary of Pulling	Load Calculations				
Segment Length, L = 421.7 ft Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft Entry Angle, $\theta = 10.0$ °								
Frictional Drag = $W_e L \mu \cos\theta = 13,683$ lb Fluidic Drag = 12 π D L C _d = 7,948 lb								
Axial Segment W Pulling Load of To	Axial Segment Weight = $W_e L \sin\theta = -8,043$ b Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Tangent = 13,589 b Total Pulling Load = 138,721 b							
		Summary of Cal	culated Stress vs.	Allowable Stress				
			1	1				
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	5,485 ok 4,947 ok	0 ok 0 ok	0 ok 1110 ok	0.09 ok 0.08 ok	0.01 ok 0.04 ok			
PC	4,947 ok 4,105 ok	17,901 ok 17,901 ok	1110 ok 1422 ok	0.47 ok 0.46 ok	0.22 ok 0.23 ok			
	4,105 ok 2,546 ok	0 ok 0 ok	1422 ok 1422 ok	0.07 ok 0.04 ok	0.05 ok 0.04 ok			
PC PT	2,546 ok 1,801 ok	17,901 ok 17,901 ok	1422 ok 1222 ok	0.43 ok 0.42 ok	0.21 ok 0.18 ok			
Exit Point	1,801 ok 0 ok	0 ok 0 ok	1222 ok -218 ok	0.03 ok 0.00 ok	0.03 ok 0.00 ok			

Lake Prince

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOLL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE CUMPATEDIATIONS THE CONTRACTOR HUBEREN, CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS OWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JDINT AVERAGE (RANGE 2 DRILL PIPE)

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

10

Lake Prince R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information					
Project : Dominion Atlantic Coast Pipeline	User :	KM	N		
Crossing : 20" Lake Prince Crossing	Date :	2/9/20	016		
Comments - Installation stress analysis based on worst-case drilled path p	er tolerances	(40' loi	nger		
and 30' deeper than design with a 1,350' radius) with 12 ppg i	mud and no E	3C			
Line Pipe Properties					
Pipe Outside Diameter =	20.000	in			
Wall Thickness =	0.411	in			
Specified Minimum Yield Strength =	70,000	psi			
Young's Modulus =	2.9E+07	psi			
Moment of Inertia =	1213.22	in ⁴			
Pipe Face Surface Area =	25.29	in ²			
Diameter to Wall Thickness Ratio, D/t =	49				
Poisson's Ratio =	0.3				
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F			
Pipe Weight in Air =	85.99	lb/ft			
Pipe Interior Volume =	2.01	ft ³ /ft			
Pipe Exterior Volume =	2.18	ft ³ /ft			
HDD Installation Properties					
Drilling Mud Density =	12.0	ppg			
=	89.8	lb/ft ³			
Ballast Density =	62.4	lb/ft ³			
Coefficient of Soil Friction =	0.30				
Fluid Drag Coefficient =	0.025	psi			
Ballast Weight =	125.18	lb/ft			
Displaced Mud Weight =	195.83	lb/ft			
Installation Stress Limits					
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi			
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No		
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No		
For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes		
Allowable Bending Stress, F _b =	45,631	psi			
Elastic Hoop Buckling Stress, F _{he} =	10,777	psi			
For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,777	psi	Yes		
For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No		
For $F_{he} > 1.6*SMYS$ and <= 6.2*SMYS, F_{hc} =	11,994	psi	No		
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No		
Critical Hoop Buckling Stress, F _{hc} =	10,777	psi			
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi			

Lake Prince R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Lake Prince R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties				
Based on profile design entered in 'Step 2, Drilled Path Input'.				
Pipe Diameter, D = 20.000 in PIpe Weight, W = 86.0 lb/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d =$ 0.025psitBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb			
Exit Tangent - S	ummary of Pulling Load Calculations			
Segment Length, L = 742.6 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft			
Frictional Drag = $W_e L \mu \cos\theta = 24,233$ lb				
Fluidic Drag = $12 \pi D L C_d = 13,998$ lb				
Axial Segment Weight = $W_e L \sin\theta = 11,352$ lb				
Pulling Load on Exit Tangent = 49,583 Ib				
Exit Sag Bend -	Summary of Pulling Load Calculations			
Segment Length, L =188.5ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = $59,102$ lb Radius of Curvature, R = $1,350$ ft Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft			
h = R [1 - $\cos(\alpha/2)$] = 3.29 ft	j = [(E I) / T] ^{1/2} = 772			
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 3.1E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 218.76			
U = (12 L) / j =	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 23,402 lb			
Bending Frictional Drag = $2 \mu N = 14,041$ lb				
Fluidic Drag = $12 \pi D L C_d = 3,553$ lb				
Axial Segment Weight = $W_e L \sin \theta = 1,444$ lb				
Pulling Load on Exit Sag Bend =19,039IbTotal Pulling Load =68,621Ib				
Bottom Tangent -	Summary of Pulling Load Calculations			
Segment Length, L = 350.9 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft			
Frictional Drag = $W_e L \mu = 11,562$ lb				
Fluidic Drag = $12 \pi D L C_d = 6,614$ lb				
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib				
Pulling Load on Bottom Tangent =18,176IbTotal Pulling Load =86,797Ib				

Lake Prince R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Segment Length, L = 235.6 ft Average Tension, T = $96,943$ lb Radius of Curvature, R = $1,350$ ft I,350 ft Deflection Angle, $\alpha = 5.0$ Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft h = R [1 - cos($\alpha/2$)] = 5.14 ft j = [(E I) / T]^{1/2} = 602 Y = [18 (L) ²] - [(j) ² (1 - cosh(U/2) ⁻¹] = $7.1E+05$ X = (3 L) - [(j / 2) tanh(U/2)] = 411.11 U = (12 L) / j = 4.69 N = [(T h) - W _e cosθ (Y/144)] / (X / 12) = $30,178$ lb Bending Frictional Drag = 2 μ N = $18,107$ lb Fluidic Drag = 12 π D L C _d = 4.441 lb Axial Segment Weight = W _e L sinθ = -2.256 lb Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = $20,293$ lb IDT Total Pulling Load = $107,090$ lb						
$h = R [1 - \cos(\alpha/2)] = \underbrace{5.14}_{P} ft \qquad j = [(E I) / T]^{1/2} = \underbrace{602}_{P} ft \qquad k = (3 L)^2 - [(j)^2 (1 - \cosh(U/2)^2] = \underbrace{7.1E+05}_{P} ft = (1 + 0)^2 (1 - \cosh(U/2)^2] = 7.1E+0$						
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = \boxed{7.1E+05} \qquad X = (3 L) - [(j / 2) \tanh(U/2)] = \underbrace{411.11} \\ U = (12 L) / j = \underbrace{4.69} \qquad N = [(T h) - W_{e} \cos\theta (Y/144)] / (X / 12) = \underbrace{30,178}] lb$ Bending Frictional Drag = 2 μ N = $\underbrace{18,107}] lb$ Fluidic Drag = 12 π D L C _d = $\underbrace{4,441}] lb$ Axial Segment Weight = W _e L sin θ = $\underbrace{-2,256}] lb$ Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = $\underbrace{20,293}] lb$ Entry Tangent - Summary of Pulling Load Calculations						
$U = (12 L) / j = 4.69 \qquad N = [(T h) - W_e \cos\theta (Y/144)] / (X / 12) = 30,178] lb$ Bending Frictional Drag = 2 µ N = 18,107] lb Fluidic Drag = 12 π D L C _d = 4,441] lb Axial Segment Weight = W _e L sinθ = -2,256] lb Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = 20,293 lb Total Pulling Load = 107,090 lb Entry Tangent - Summary of Pulling Load Calculations						
Bending Frictional Drag = $2 \mu N = 18,107$ lb Fluidic Drag = $12 \pi D L C_d = 4,441$ lb Axial Segment Weight = $W_e L \sin\theta = -2,256$ lb Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = 20,293 lb Total Pulling Load = 107,090 lb Entry Tangent - Summary of Pulling Load Calculations						
Fluidic Drag = 12π D L C _d = 4,441 Ib Axial Segment Weight = W _e L sin θ = -2,256 Ib Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = 20,293 Ib Total Pulling Load = 107,090 Ib Entry Tangent - Summary of Pulling Load Calculations						
Axial Segment Weight = W _e L sinθ = -2,256 Ib Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Sag Bend = 20,293 Ib Total Pulling Load = 107,090 Ib Entry Tangent - Summary of Pulling Load Calculations						
Pulling Load on Entry Sag Bend = 20,293 Ib Total Pulling Load = 107,090 Ib Entry Tangent - Summary of Pulling Load Calculations						
Entry Tangent - Summary of Pulling Load Calculations						
• · · · · · · · · · · · · · · · · · · ·						
Segment Length, L = 491.3 ft Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft Entry Angle, $\theta = 10.0$ °						
Frictional Drag = $W_e L \mu \cos\theta = 15,945$ lb Fluidic Drag = 12 π D L C _d = 9,262 lb						
Axial Segment Weight = $W_e L \sin\theta = \begin{bmatrix} -9,372 \\ -9,372 \end{bmatrix}$ Ib Negative value indicates axial weight applied in direction of installation Pulling Load on Entry Tangent = 15,835 \\ 122,924 \end{bmatrix} Ib						
Summary of Calculated Stress vs. Allowable Stress						
Tensile Stress Bending Stress External Hoop Stress Combined Tensile & Bending Combined Tensile Bending & Ext. Hoop						
Entry Point 4,860 ok 0 ok 0 ok 0.08 ok 0.01 ok						
PC A 234 ok ok O 0 0k A 234 ok O 0 0k O 46 ok O 46 ok O 32 ok						
4,234 0k 17,901 0k 1234 0k 0.46 0k 0.22 0k 3,432 0k 17,901 0k 1605 0k 0.45 0k 0.23 0k						
3,432 ok 0 ok 1605 ok 0.05 ok 0.06 ok 2,713 ok 0 ok 1605 ok 0.04 ok 0.06 ok						
PC 2,713 ok 17,901 ok 1605 ok 0.44 ok 0.22 ok 1,960 ok 17,901 ok 1406 ok 0.42 ok 0.20 ok 0.20 ok						
1,960 ok 0 ok 1406 ok 0.03 ok 0.04 ok Exit Point 0 ok 0 ok -162 ok 0.00 ok 0.00 ok						

Western Branch Reservoir

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

GENERAL LEGEND

DRILLED PATH ENTRY/EXIT PDINT

GEDTECHNICAL LEGEND

BORING LOCATION

SPLIT SPOON SAMPLE

53 1223 - PENETRATION RESISTANCE IN BLOWS PER FOOT FOR A 140 POUND HAMMER FALLING 30 INCHES PERCENTAGE OF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL

SHELBY TUBE SAMPLE

53**⊥**

______PERCENTAGE DF GRAVEL BY WEIGHT FDR SAMPLES CONTAINING GRAVEL GEDTECHNICAL NOTES

- 1. GEDTECHNICAL DATA PROVIDED BY GEDSYNTEC CONSULTANTS, RICHMOND, VIRGINIA, REFER TO THE GEDTECHNICAL SITE INVESTIGATION REPORT FOR MORE DETAILED SUBSURFACE INFORMATION.
- 2. THE LETTER 'N' TO THE LEFT OF A SAMPLE INDICATES THAT NO GRAVEL WAS DBSERVED IN THE SAMPLE. THE LETTERS 'N' INDICATE THAT GRAVEL WAS DBSERVED BUT NO GRADATION TEST WAS PERFORMED.
- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE DRIGINAL BDRINGS MAY BE DONE TO CHARACTERIZE THE SDIL CONDITIONS, HOWEVER, COMPANY DDES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPETING THIS DATA.

TOPOGRAPHIC SURVEY NOTES

- 1. TOPOGRAPHIC SURVEY DATA PROVIDED BY GAI CONSULTANTS, CANONSBURG, PENNSYLVANIA.
- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

DRILLED PATH NOTES

- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

PILOT HOLE TOLERANCES

THE PILOT HOLE SHALL BE DRILLED TO THE TOLERANCES LISTED BELOW. HOWEVER, IN ALL CASES, RIGHT-OF-WAY RESTRICTIONS AND CONCERN FOR ADJACENT FACILITIES SHALL TAKE PRECEDENCE OVER THESE TOLERANCES.

- 1. ENTRY POINT; UP TO 10 FEET FORWARD OR BACK FROM THE DESIGNED ENTRY POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 2. EXIT PDINT: UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT PDINT; UP TO 5 1. FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT

2.

- 3. ELEVATION: UP TO 5 FEET ABOVE AND 15 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

HORIZONTAL DRILLED LENGTH = 1,464' TRUE LENGTH = 1,477'

ATLANTIC COAST PIPELINE PROJECT	PLAN AND PROFILE 0-INCH PIPELINE CROSSING OF WESTERN BRANCH RESERVOIR BY HORIZONTAL DIRECTIONAL DRILLING	ATION: SUFFOLK, VIRGINIA	WN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	MN 05/20/16 ACM JSP SHOWN FOR WB RESERVOIR 1
		FOC	JSP JSP DR	CHKD APP.
			JSP	BY
			EVISE GEOTECHNICAL LEGEND	REVISION DESCRIPTION
			3/10/16 R	DATE
			0 -	NO
	Jeffrey S. Puckett, P.E. Consulting Engineer		2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	PROJE	ст No on\	э. 15	08
	AP3	-C)6	53

PLAN SCALE¹ 1'=100'

1. CONTACT THE UTILITY LOCATION/NOTIFICATION SERVICE FOR THE CONSTRUCTION AREA.

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.
Western Branch Reservoir R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information						
Project : Do	ominion Atlantic Coast Pipeline	User :	AC	М			
Crossing : 20)" Western Branch Reservoir Crossing	Date :	6/15/2	2016			
Comments : Installation stress analysis based on worst-case drilled path per tolerances (40' long							
Comments : up to 11' deeper than design with 1,350' radius) with 12 ppg mud and no BC							
	Line Pipe Properties						
	Pipe Outside Diameter =	20.000	in				
	Wall Thickness =	0.411	in				
	Specified Minimum Yield Strength =	70,000	psi				
	2.9E+07	psi					
	1213.22	in ⁴					
	Pipe Face Surface Area =	25.29	in ²				
	49						
	Poisson's Ratio =	0.3					
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F				
	Pipe Weight in Air =	85.99	lb/ft				
	Pipe Interior Volume =	2.01	ft ³ /ft				
	2.18	ft ³ /ft					
	HDD Installation Properties						
	Drilling Mud Density =	12.0	ppg				
	=	89.8	lb/ft ³				
	Ballast Density =	62.4	lb/ft ³				
	Coefficient of Soil Friction =	0.30					
	Fluid Drag Coefficient =	0.025	psi				
	Ballast Weight =	125.18	lb/ft				
	Displaced Mud Weight =	195.83	lb/ft				
	Installation Stress Limits						
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi				
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No			
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F _b =	44,493	psi	No			
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes			
	Allowable Bending Stress, F _b =	45,631	psi				
	Elastic Hoop Buckling Stress, F _{he} =	10,777	psi				
F	For $F_{he} \leq 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,777	psi	Yes			
	For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No			
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No			
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No			
	Critical Hoop Buckling Stress, F _{hc} =	10,777	psi				
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi				

Western Branch Reservoir R1 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Western Branch Reservoir R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 20.000 in PIpe Weight, W = 86.0 lb/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = $ psitBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	Summary of Pulling Load Calculations
Segment Length, L = 596.5 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta =$ 19,464 lb	
Fluidic Drag = 12π D L C _d = 11,243 lb	
Axial Segment Weight = $W_e L \sin\theta = 9,118$ lb	
Pulling Load on Exit Tangent = 39,825 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L = 188.5 ft Segment Angle with Horizontal, θ = -8.0 ° Deflection Angle, α = -4.0 °	Average Tension, T =49,105IbRadius of Curvature, R =1,350ftEffective Weight, W _e = W + W _b - W _m =-109.8Ib/ft
h = R [1 - cos(α/2)] = 3.29 ft	j = [(E I) / T] ^{1/2} = 846
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.8E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 196.96
U = (12 L) / j =2.67	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 22,605 lb
Bending Frictional Drag = $2 \mu N = 13,563$ lb	
Fluidic Drag = $12 \pi D L C_d = 3,553$ lb	
Axial Segment Weight = $W_e L \sin \theta = 1,444$ lb	
Pulling Load on Exit Sag Bend = 18,560 lb Total Pulling Load = 58,385 lb	
Bottom Tangent	- Summary of Pulling Load Calculations
Segment Length, L = 0.1 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft
Frictional Drag = W _e L µ =3 Ib	
Fluidic Drag = $12 \pi D L C_d = 2$ lb	
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib	
Pulling Load on Bottom Tangent = 5 Ib Total Pulling Load = 58,390 Ib	

Western Branch Reservoir R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	l	Entry Sag Bend - S	Summary of Pulling	g Load Calculations			
Segment Le Segment Angle with Horiz Deflection A	ength, L = ontal, θ = angle, α =	235.6 ft 10.0 ° 5.0 °	A Radi Effective Weight, V	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	67,685 lb 1,350 ft -109.8 lb/ft		
h = R [1 - c	os(α/2)] =	5.14 ft		$j = [(E I) / T]^{1/2} =$	721		
Y = [18 (L) ²] - [(j) ² (1 - cosh	u(U/2) ⁻¹] =	6.2E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	360.37		
U = (12 L) / j =[3.92	N = [(T h) - W _e cose	9 (Y/144)] / (X / 12) =	27,341 lb		
Bending Frictional Drag	= 2 µ N =	16,405 lb					
Fluidic Drag = 12 π	DLC _d =	4,441 lb					
Axial Segment Weight = W	_e L sinθ =	-2,256 lb	Negative value indicat	tes axial weight applied	in direction of installation	ı	
Pulling Load on Entry Sag Total Pulling	Bend = Load =	18,590 lb 76,980 lb					
		Entry Tangent - S	ummary of Pulling	Load Calculations			
Segment Le Entry A	ength, L = $\left[\frac{1}{2} + $	498.4 ft 10.0 °	Effective Weight, V	V _e = W + W _b - W _m =	-109.8 lb/ft		
Frictional Drag = W _e L	μ cosθ =	16,175 lb					
Fluidic Drag = 12 π	DLC _d =	9,395 lb					
Axial Segment Weight = W	_e L sinθ =	-9,507 lb	Negative value indicat	tes axial weight applied	in direction of installation	1	
Pulling Load on Entry Tangent = 16,063 Ib Total Pulling Load = 93,043 Ib							
Summary of Calculated Stress vs. Allowable Stress							
				T			
Tensile	Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Bending & Ext. Hoop		
Entry Point 3,6 3,0	79 ok 44 ok	0 ok 0 ok	0 ok 1147 ok	0.06 ok 0.05 ok	0.00 ok 0.03 ok		
PC 3,00 2,30 PT	44 ok 09 ok	17,901 ok 17,901 ok	1147 ok 1458 ok	0.44 ok 0.43 ok	0.19 ok 0.20 ok		
2,30 2,30	09 ok 08 ok	0 ok 0 ok	1458 ok 1458 ok	0.04 ok 0.04 ok	0.05 ok 0.05 ok		
PC	08 ok 75 ok	17,901 ok 17,901 ok	1458 ok 1259 ok	0.43 ok 0.42 ok	0.20 ok 0.18 ok		
Exit Point	75 ok 0 ok	0 ok 0 ok	1259 ok 0 ok	0.02 ok 0.00 ok	0.03 ok 0.00 ok		

Nansemond River Tributary

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

HORIZONTAL DRILLED LENGTH = 3,435'

100'	PROPOSED ACP CENTERLINE 904'	PROPERTY LINE (TYPICAL)	A CONTRACTOR OF	DESIGNED DRILLED ALIGNMENT	
PROPOSED TEMPORAR FUR HDD PJEF STDE AND PULL SECTION EXTEND APPROX. 1, HDD EXIT. NOTE TH TIE-IN WELDS ARE	Y WORKSPACE OPERATIONS STAGING TO GOO' BEYOND AT MULTIPLE ANTICIPATED.	© BURING NAT B-1		MUDFLAT AND MARSH AREA, ND SURVEY DATA OBTAINED	PROPOSED T WORKSPACE RIG SIDE OPI
40	EXIT PDINT @ 10* 34+35.33,48.41 N 13388704.69,E 2934780.08 D+00	P. T. 10° SAG BEND 28+62.40, -52.62 30+00	P. C. 10* SAG BEND 25+15.11, -83.00 RADIUS = 2,000' 20+00	P. T. 3 7+65 0 10+	10° SAG BEND P. C. 10° SAG BEND 5. 73, -83. 00 4+18. 43, -52, 62 RADIUS = 2, 000' 00
EXISTING GRADE BASED DN CDNTDUR DATA (TYPICAL)		-B-1			
	CLAVEY SAND (SC). TO SANDY LEAN CLAY (CL)	REIA REIA REIA REIA REIA EXISTING BASED ON BASED ON	GRADE SURVEY		
	SILT (ML) WITH SHELL PRAGMENTS		APPRDXIMATE VATER SURFACE		
	SILTY FINE SAND (SM) WITH SHELL FRAMENTS		ASSUMED GRADE		
	FAT CLAY (CH) VITH SAND	<u>2</u> <u>μ</u> 2 <u>γ</u> <u>μ</u> 2 <u>γ</u> <u>μ</u> 2 <u>γ</u> <u>μ</u> 6			
		v.B. 5 v.B. 5 p.B. 15 v. 0. 60%			
NDTE: PLACEMENT OF HORIZONTAL DRILLING RIG NOT FIXED BY DESIGNATION OF ENTRY AND EXIT PDINTS.D BRILLING RIG PLACEMENT AND/DR THE OF DUAL RIGS SHALL BE AT CONTRACTOR'S OPTI	IS SILTY SAND (SHO VITH SHELLS USE UN.	v@.s 2.₫.10 v@.6 s.₫.35			
NDTE: STRATIFICATION LINES AND SUBSURFACE MATERIAL DESCRIPTIONS SHOWN ON THIS DRAWIN. HAVE BEEN SIMPLIFIED FOR PRESENTATION PURP	G DSES. DR	v_ <u>Ø_5</u> 3		DESIGNED DRILLED PROFILE 20' D. D. , O. 411' W. T.	
REFER TO THE PROJECT GEDTECHNICAL REPORT F. MORE DETAILED SUBSURFACE INFORMATION.				API 5L X-70 STEEL LINE PIPE	

GEDTECHNICAL LEGEND

BORING LOCATION

SPLIT SPOON SAMPLE

- 53 23-23- PENETRATION RESISTANCE IN BLOWS PER FOOT 53 23-FOR A 140 POUND HAMMER FALLING 30 INCHES PERCENTAGE OF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL
- CONSULTANTS, RICHMOND, VIRGINIA. REFER TO THE PROJECT GEOTECHNICAL REPORT DATED MARCH 2016 FOR MORE DETAILED SUBSURFACE INFORMATION.
- 2. THE LETTER 'N' TO THE LEFT OF A SPLIT SPOON SAMPLE INDICATES THAT NO GRAVEL WAS DESERVED IN THE SAMPLE. THE LETTERS 'NT' INDICATE THAT GRAVEL WAS DESERVED BUT NO GRADATION TEST WAS PERFORMED.
- THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE DF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION DF THIS DATA DUTSIDE DF THE DRIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DDES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR WIST UNE HIS DWLE EVERTICA AND HUDSYENT IN З. MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.
- CONSULTANTS, CANONSBURG, PENNSYLVANIA.
- 2. NORTHINGS AND EASTINGS ARE IN U.S. SURVEY FEET REFERENCED TO UTM COORDINATES, ZONE 17, NAD 83.
- 3. ELEVATIONS ARE IN FEET REFERENCED TO NAVD 88.

<u>DRILLED PATH NOTES</u>

- 1. DRILLED PATH STATIONING IS IN FEET BY HORIZONTAL MEASUREMENT AND IS REFERENCED TO CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

LISTED BELOW. HOWEVER, IN ALL CASES, RIGHT-OF-WAY RESTRICTIONS AND CONCERN FOR ADJACENT FACILITIES SHALL TAKE PRECEDENCE OVER THESE TOLERANCES.

- 1. ENTRY POINT: UP TO 10 FEET FORWARD OR BACK FROM THE DESIGNED ENTRY POINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 2. EXIT PDINT; UP TO 10 FEET SHORT OR 30 FEET LONG RELATIVE TO THE DESIGNED EXIT PDINT; UP TO 5 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 3. ELEVATION: UP TO 5 FEET ABOVE AND 30 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JDINT AVERAGE (RANGE 2 DRILL PIPE)

3. MDDIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

		ala	NUO.			REVISION	2
ECT		TUTED T		_		ABEL	ID TRIB
ROJ						SAWING L	ANSEMON
INE	2	LE A NSEM				DF	FOR PLOT N
PIPEL		TUCTI TUCTI				SCALE	SHOWN D-SIZED
AST	AN AND					PPROVED	JSP
IC CO	Id				NIA	CKED AF	MP
ANT		ZI IND			K, VIRGIN	CHEC	16 D
ATL.				â	: SUFFOL	DATE	04/08/1
		NI UC	NTT-07		LOCATION	DRAWN	KMN
					SP	SP	.PP.
					, ASL	ACM v	CHKD /
					ACM	KMN	BY C
					1/16 UPDATED RIG SIDE WORKSPACE	1/16 LOWER DESIGN TO REDUCE RISK OF INAD. RETURNS	IE REVISION DESCRIPTION
					06/10	04/29	DAT
					2	-	ON
		Jettrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	Ι	Do:	PRO mi	oje ni	ст N оп [\]	10. \15	08
			м		POS	T	
					-		

Nansemond Tributary R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Project Information							
Project : Dominion Atlantic Coast Pipeline	User :	JS	Р				
Crossing : 20" Nansemond Tributary Crossing	Date :	4/29/2	2016				
Comments : Installation stress analysis based on worst-case drilled path per tolerances (40' long							
and 30' deeper than design with a 1,350' radius) with 12 ppg mud and no BC							
Line Pipe Properties							
Pipe Outside Diameter =	20.000	in					
Wall Thickness =	0.411	in					
Specified Minimum Yield Strength =	70,000	psi					
Young's Modulus =	2.9E+07	psi					
Moment of Inertia =	1213.22	in⁴					
Pipe Face Surface Area =	25.29	in ²					
Diameter to Wall Thickness Ratio, D/t =	49						
Poisson's Ratio =	0.3						
Coefficient of Thermal Expansion =	6.5E-06	in/in/°F					
Pipe Weight in Air =	85.99	lb/ft					
Pipe Interior Volume =	2.01	ft ³ /ft					
Pipe Exterior Volume =	2.18	ft ³ /ft					
HDD Installation Properties							
Drilling Mud Density =	12.0	ppg					
=	89.8	lb/ft ³					
Ballast Density =	62.4	lb/ft ³					
Coefficient of Soil Friction =	0.30						
Fluid Drag Coefficient =	0.025	psi					
Ballast Weight =	125.18	lb/ft					
Displaced Mud Weight =	195.83	lb/ft					
Installation Stress Limits							
Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi					
For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No				
For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No				
For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes				
Allowable Bending Stress, F _b =	45,631	psi					
Elastic Hoop Buckling Stress, F _{he} =	10,777	psi					
For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,777	psi	Yes				
For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No				
For $F_{he} > 1.6*SMYS$ and <= 6.2*SMYS, F_{hc} =	11,994	psi	No				
For F _{he} > 6.2*SMYS, F _{hc} =	70,000	psi	No				
Critical Hoop Buckling Stress, F _{hc} =	10,777	psi					
Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi					

Nansemond Tributary R1 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Nansemond Tributary R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	and Installation Properties
Based on profile de	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D = 20.000 in PIpe Weight, W = 86.0 Ib/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d =$ psitBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 811.7 ft Exit Angle, θ = 10.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 26,342$ lb	
Fluidic Drag = 12 π D L C _d = 15,301 Ib	
Axial Segment Weight = $W_e L \sin\theta = 15,483$ lb	
Pulling Load on Exit Tangent = 57,125 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L =235.6ftSegment Angle with Horizontal, θ =-10.0°Deflection Angle, α =-5.0°	Average Tension, T = $68,706$ lb Radius of Curvature, R = $1,350$ ft Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft
h = R [1 - $\cos(\alpha/2)$] = 5.14 ft	j = [(E I) / T] ^{1/2} = 716
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 6.3E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = <u>362.56</u>
U = (12 L) / j =3.95	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 27,440 lb
Bending Frictional Drag = $2 \mu N = 16,464$ lb	
Fluidic Drag = $12 \pi D L C_d = 4,441$ lb	
Axial Segment Weight = $W_e L \sin\theta = 2,256$ lb	
Pulling Load on Exit Sag Bend =23,161IbTotal Pulling Load =80,286Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 1563.1 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft
Frictional Drag = W _e L μ = 51,507 Ib	
Fluidic Drag = $12 \pi D L C_d = 29,464$ lb	
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib	
Pulling Load on Bottom Tangent =80,971IbTotal Pulling Load =161,257Ib	

Nansemond Tributary R1 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend - S	Summary of Pulling	Load Calculations				
Se Segment Angle v De	gment Length, L = vith Horizontal, θ = flection Angle, α =	235.6 ft 10.0 ° 5.0 °	A\ Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	173,618 lb 1,350 ft -109.8 lb/ft			
h =	= R [1 - cos(α/2)] =	5.14 ft		$j = [(E I) / T]^{1/2} =$	450			
$Y = [18 (L)^2] - [(j)^2]$	$(1 - \cosh(U/2)^{-1}] =$	8.1E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	482.62			
	U = (12 L) / j =	6.28	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	37,559 lb			
Bending Frictio	nal Drag = 2 μ N =	22,535 lb						
Fluidic Dra	ag = 12 π D L C _d =	4,441 lb						
Axial Segment We	$hight = W_e L \sin \theta =$	-2,256 lb	Negative value indicate	es axial weight applied i	n direction of installation			
Pulling Load on E Tota	intry Sag Bend = al Pulling Load =	24,721 lb 185,978 lb						
		Entry Tangent - Se	ummary of Pulling	Load Calculations				
Se	gment Length, L = Entry Angle, θ =	653.9 ft 10.0 °	Effective Weight, W	$V_{e} = W + W_{b} - W_{m} =$	-109.8 lb/ft			
Frictional Dra	g = W _e L μ cosθ =	21,221 lb						
Fluidic Dra	ag = 12 π D L C _d =	12,326 lb						
Axial Segment We	$eight = W_e L \sin \theta =$	-12,473 lb	Negative value indicate	es axial weight applied	n direction of installation			
Pulling Load on Tota	Pulling Load on Entry Tangent =21,074IbTotal Pulling Load =207,053Ib							
		Summary of Cal	culated Stress vs.	Allowable Stress				
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	8,186 ok 7,353 ok	0 ok 0 ok	0 ok 1722 ok	0.13 ok 0.12 ok	0.02 ok 0.09 ok			
PC	7,353 ok 6,376 ok	17,901 ok 17,901 ok	1722 ok 2033 ok	0.51 ok 0.49 ok	0.31 ok 0.32 ok			
	6,376 ok 3.174 ok	0 ok 0 ok	2033 ok 2033 ok	0.10 ok 0.05 ok	0.11 ok 0.09 ok			
PC	3,174 ok	17,901 ok	2033 ok	0.44 ok	0.27 ok			
PT	2,259 ok	17,901 ok	1722 ok	0.43 ok	0.23 ok			
Exit Point	2,259 ok 0 ok	0 ok 0 ok	1722 ok -416 ok	0.04 ok 0.00 ok	0.06 ok 0.00 ok			

Nansemond River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

								ATLAN	VTIC CO	AST P	PELINE	PROJECT	
Ι					-				IC				
Do	Jettrey S. Puckett, P.E.						ſ				E THE NAN	SEMOND BIV	00
^{рко} mi	Consulting Engineer						1	LILI UUVII-U PV P	DDIZONT	D DALLOC		DILLINC	
DJE ni ILE								1 10	UNIZON				
CT N ON POS							LOCATIO	N: SUFFOLK, V	IRGINIA				
ю. \15 т	2424 East 21st Street						DRAWN	DATE	CHECKED AF	PROVED SO	ALE	DRAWING LABEL	REVISION
08	Suite 510 Tulsa, Oklahoma 74114	NO.	DATE	REVISION DESCRIPTION	BY CF	HK'D APP	KMN	06/03/16	DMP	JSP	SHOWN FOR -SIZED PLOT	NANSEMOND	0

Nansemond River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information						
Project : [Dominion Atlantic Coast Pipeline	User :	KM	N			
Crossing : 2	20" Nansemond River Crossing	Date :	7/22/2	2016			
Comments : Installation stress analysis based on worst-case drilled path per tolerances (40' long							
Comments and 30' deeper than design with a 1,350' radius) with 12 ppg mud and no BC							
	Line Pipe Properties						
	Pipe Outside Diameter =	20.000	in				
	Wall Thickness =	0.411	in				
	Specified Minimum Yield Strength =	70,000	psi				
Young's Modulus = 2.9E+07 psi							
Moment of Inertia = 1213.22 in ⁴							
Pipe Face Surface Area = 25.29 in ²							
Diameter to Wall Thickness Ratio, D/t = 49							
	Poisson's Ratio =	0.3					
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F				
	Pipe Weight in Air =	85.99	lb/ft				
	2.01	ft ³ /ft					
	2.18	ft ³ /ft					
	HDD Installation Properties						
	Drilling Mud Density =	12.0	ppg				
	=	89.8	lb/ft ³				
	Ballast Density =	62.4	lb/ft ³				
	Coefficient of Soil Friction =	0.30					
	Fluid Drag Coefficient =	0.025	psi				
	Ballast Weight =	125.18	lb/ft				
	Displaced Mud Weight =	195.83	lb/ft				
	Installation Stress Limits						
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi				
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No			
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No			
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes			
	Allowable Bending Stress, F _b =	45,631	psi				
	Elastic Hoop Buckling Stress, F_{he} =	10,777	psi				
	For $F_{he} \le 0.55$ *SMYS, Critical Hoop Buckling Stress, F_{hc} =	10,777	psi	Yes			
	For $F_{he} > 0.55$ *SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No			
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No			
	For $F_{he} > 6.2*SMYS$, $F_{hc} =$	70,000	psi	No			
	Critical Hoop Buckling Stress, F _{hc} =	10,777	psi				
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi				

Nansemond River R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Grade

Points

Nansemond River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	and Installation Properties
Based on profile des	sign entered in 'Step 2, Drilled Path Input'.
Pipe Diameter, D =20.000inPIpe Weight, W =86.0lb/flCoefficient of Soil Friction, μ =0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb
Exit Tangent - S	ummary of Pulling Load Calculations
Segment Length, L = 495.6 ft Exit Angle, θ = 10.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft
Frictional Drag = $W_e L \mu \cos\theta = 16,083$ lb	
Fluidic Drag = 12π D L C _d = 9,342 Ib	
Axial Segment Weight = $W_e L \sin\theta = 9,453$ lb	
Pulling Load on Exit Tangent = 34,878 Ib	
Exit Sag Bend -	Summary of Pulling Load Calculations
Segment Length, L =235.6ftSegment Angle with Horizontal, θ =-10.0°Deflection Angle, α =-5.0°	Average Tension, T = $45,789$ lb Radius of Curvature, R = $1,350$ ft Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft
h = R [1 - cos(α/2)] = 5.14 ft	j = [(E I) / T] ^{1/2} = 877
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 5.3E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = <u>302.07</u>
U = (12 L) / j = 3.23	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 25,209 lb
Bending Frictional Drag = $2 \mu N = 15,125$ lb	
Fluidic Drag = $12 \pi D L C_d = 4,441$ lb	
Axial Segment Weight = $W_e L \sin\theta = 2,256$ Ib	
Pulling Load on Exit Sag Bend =21,822IbTotal Pulling Load =56,700Ib	
Bottom Tangent -	Summary of Pulling Load Calculations
Segment Length, L = 2736.7 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft
Frictional Drag = W _e L µ = 90,179 Ib	
Fluidic Drag = 12π D L C _d = 51,585 lb	
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib	
Pulling Load on Bottom Tangent =141,765IbTotal Pulling Load =198,465Ib	

Nansemond River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

		Entry Sag Bend - S	Summary of Pulling	Load Calculations			
S Segment Angle D	egment Length, L = with Horizontal, θ = leflection Angle, α =	235.6 ft 10.0 ° 5.0 °	A\ Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	211,924 lb 1,350 ft -109.8 lb/ft		
h	= R [1 - cos(α/2)] =	5.14 ft		$j = [(E I) / T]^{1/2} =$	407		
Y = [18 (L) ²] - [(j)) ² (1 - cosh(U/2) ⁻¹] =	8.4E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	503.53		
	U = (12 L) / j =	6.94	N = [(T h) - W _e cosθ	(Y/144)] / (X / 12) =	41,223 lb		
Bending Friction	onal Drag = 2 μ N =	24,734 lb					
Fluidic D	rag = 12 π D L C _d =	4,441 lb					
Axial Segment W	$eight = W_e L \sin\theta =$	-2,256 lb	Negative value indicate	es axial weight applied	in direction of installation		
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	26,919 lb 225,384 lb					
		Entry Tangent - S	ummary of Pulling	Load Calculations			
s	egment Length, L = Entry Angle, θ =	480.8 ft 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	-109.8 lb/ft		
Frictional Dr	rag = W _e L μ cosθ =	15,603 lb					
Fluidic D	rag = 12 π D L C _d =	9,063 lb					
Axial Segment W	/eight = $W_e L \sin \theta$ =	-9,171 lb	Negative value indicate	es axial weight applied	in direction of installation		
Pulling Load on Entry Tangent =15,495IbTotal Pulling Load =240,879Ib							
		Summary of Cal	culated Stress vs.	Allowable Stress			
					1		
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop		
Entry Point	9,523 ok 8,911 ok	0 ok 0 ok	0 ok 1266 ok	0.15 ok 0.14 ok	0.03 ok 0.07 ok		
PC	8,911 ok 7,847 ok	17,901 ok 17,901 ok	1266 ok 1577 ok	0.53 ok 0.52 ok	0.30 ok 0.31 ok		
	7,847 ok 2,242 ok	0 ok 0 ok	1577 ok 1577 ok	0.12 ok 0.04 ok	0.08 ok 0.05 ok		
PC	2,242 ok 1,379 ok	17,901 ok 17,901 ok	1577 ok 1266 ok	0.43 ok 0.41 ok	0.21 ok 0.18 ok		
Exit Point	1,379 ok 0 ok	0 ok 0 ok	1266 ok -39 ok	0.02 ok 0.00 ok	0.03 ok 0.00 ok		

Interstate 64

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

. 10

Interstate 64 R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information							
Project :	Dominion Atlantic Coast Pipeline	User :	KM	N				
Crossing :	20" Interstate 64 Crossing	Date :	7/22/2	2016				
Comments ·	Comments Installation stress analysis based on worst-case drilled path per tolerances (40' lon							
Comments .	and 30' deeper than design with a 1,350' radius) with 12 ppg mud and no BC							
	Line Pipe Properties							
	Pipe Outside Diameter = 20.000 in							
	Wall Thickness =	0.411	in					
	Specified Minimum Yield Strength =	70,000	psi					
	Young's Modulus =	2.9E+07	psi					
	Moment of Inertia =	1213.22	in ⁴					
	Pipe Face Surface Area =	25.29	in ²					
	Diameter to Wall Thickness Ratio, D/t =	49						
	Poisson's Ratio =	0.3						
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F					
	Pipe Weight in Air =	85.99	lb/ft					
	Pipe Interior Volume =	2.01	ft ³ /ft					
	Pipe Exterior Volume =							
	HDD Installation Properties							
	Drilling Mud Density =	12.0	ppg					
	=	89.8	lb/ft ³					
	Ballast Density =	62.4	lb/ft ³					
	0.30							
	0.025	psi						
	125.18	lb/ft						
	Displaced Mud Weight =	195.83	lb/ft					
	Installation Stress Limits							
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi					
	For D/t <= 1,500,000/SMYS, F _b =	52,500	psi	No				
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No				
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes				
	Allowable Bending Stress, F _b =	45,631	psi					
	Elastic Hoop Buckling Stress, F _{he} =	10,777	psi					
	For $F_{he} = 0.55$ *SMYS, Critical Hoop Buckling Stress, $F_{hc} =$	10,777	psi	Yes				
	For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No				
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No				
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No				
	Critical Hoop Buckling Stress, F _{hc} =	10,777	psi					
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi					

Interstate 64 R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Interstate 64 R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe	Pipe and Installation Properties							
Based on profile design entered in 'Step 2, Drilled Path Input'.								
Pipe Diameter, D = 20.000 in PIpe Weight, W = 86.0 lb/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d = $ 0.025psitBallast Weight / ft Pipe, $W_b = $ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m = $ 195.8lb(If Submerged)Above Ground Load = 0lb							
Exit Tangent - S	Summary of Pulling Load Calculations							
Segment Length, L = 621.6 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft							
Frictional Drag = $W_e L \mu \cos\theta = 20,284$ lb								
Fluidic Drag = $12 \pi D L C_d = 11,717$ lb								
Axial Segment Weight = $W_e L \sin\theta = 9,503$ lb								
Pulling Load on Exit Tangent = 41,504 Ib								
Exit Sag Bend -	Summary of Pulling Load Calculations							
Segment Length, L =188.5ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = $50,825$ lb Radius of Curvature, R = $1,350$ ft Effective Weight, W _e = W + W _b - W _m = -109.8 lb/ft							
h = R [1 - $\cos(\alpha/2)$] = 3.29 ft	j = [(E I) / T] ^{1/2} = 832							
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 2.8E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 200.97							
U = (12 L) / j =	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 22,742 lb							
Bending Frictional Drag = $2 \mu N =$ 13,645 lb								
Fluidic Drag = $12 \pi D L C_d = 3,553$ lb								
Axial Segment Weight = $W_e L \sin \theta = 1,444$ lb								
Pulling Load on Exit Sag Bend =18,643IbTotal Pulling Load =60,147Ib								
Bottom Tangent -	Summary of Pulling Load Calculations							
Segment Length, L = 591.4 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft							
Frictional Drag = W _e L μ = <u>19,489</u> lb								
Fluidic Drag = $12 \pi D L C_d = 11,148$ lb								
Axial Segment Weight = $W_e L \sin\theta = 0$ lb								
Pulling Load on Bottom Tangent =30,637IbTotal Pulling Load =90,784Ib								

Interstate 64 R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
Segment Ler Segment Angle with Horizc Deflection Ar	ngth, L = ntal, $θ$ = ngle, $α$ =	235.6 ft 10.0 ° 5.0 °	A Radi Effective Weight, V	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	101,049 lb 1,350 ft -109.8 lb/ft			
h = R [1 - co	s(α/2)] =	5.14 ft		$j = [(E I) / T]^{1/2} =$	590			
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh($	U/2) ⁻¹] =	7.1E+05	X = (3 L) -	[(j / 2) tanh(U/2)] =	416.68			
U = (1	U = (12 L) / j = 4.79 N = [(T h) - W _e cos θ (Y/144)] / (X / 12) = 30,575 lb							
Bending Frictional Drag =	2μN=	18,345 lb						
Fluidic Drag = 12 π	DLC _d =	4,441 lb						
Axial Segment Weight = W_e	L sinθ =	-2,256 lb	Negative value indicat	es axial weight applied	in direction of installation			
Pulling Load on Entry Sag Total Pulling	Bend = Load =	20,531 lb 111,315 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
Segment Ler Entry A	Segment Length, L = 456.0 ft Effective Weight, W _e = W + W _b - W _m = -109.8 Ib/ft Entry Angle, θ = 10.0 °							
Frictional Drag = W _e L	μ cosθ =	14,799 lb						
Fluidic Drag = 12 π	DLC _d =	8,596 lb						
Axial Segment Weight = W _e	L sinθ =	-8,698 lb	Negative value indicat	es axial weight applied	in direction of installation			
Pulling Load on Entry Ta Total Pulling	ngent = Load =	14,697 lb 126,012 lb						
		Summary of Cal	culated Stress vs.	Allowable Stress				
				1	1			
Tensile	Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point 4,98	2 ok	0 ok	0 ok	0.08 ok	0.01 ok			
PC	1 ok	0 ok	1200 ok	0.07 ok	0.04 ok			
4,40	1 ok 9 ok	17,901 ok 17,901 ok	1200 ok 1511 ok	0.46 ok 0.45 ok	0.22 ok 0.23 ok			
3,58	9 ok	0 ok	1511 ok	0.06 ok	0.05 ok			
PC	о ок	U OK		0.04 OK	0.05 OK			
2,37 1,64	ok 1 ok	17,901 ok 17,901 ok	1511 ok 1312 ok	0.43 ok 0.42 ok	0.21 ok 0.18 ok			
Exit Point	1 ok 0 ok	0 ok 0 ok	1312 ok 0 ok	0.03 ok 0.00 ok	0.04 ok 0.00 ok			
			•		•			

Route 17

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- 53 🛛
- PERCENTAGE DF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL

- THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE ORIGINAL BORINGS MAY BE DONE TO CHARACTERIZE THE SOIL CONDITIONS, HOWEVER, COMPANY DOES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- CONTROL ESTABLISHED FOR THE DRILLED SEGMENT.
- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 3. ELEVATION: UP TO 5 FEET ABOVE AND 30 FEET BELOW THE DESIGNED PROFILE
- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JOINT AVERAGE (RANGE 2 DRILL PIPE)

ATLANTIC COAST PIPELINE PROJECT	PLAN AND PROFILE	20-TIVCH FIFELINE CROSSING OF ROUTE 1/ RV HORIZONTAL DIRECTIONAL DRIFTING		LOCATION: CHESAPEAKE, VIRGINIA	DRAWN DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	KMN 04/01/16 ACM JSP SHOWN FOR ROUTE 17 0
						Y CHKD APP.
						REVISION DESCRIPTION
						DATE
						NO.
	Jeffrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Sulte 510 Tulsa, Oklahoma 74114
	Do A	ряс mii мi	nio	ст N On\ POST	о. 15 г)7	⁰⁸

- 20

. 10

POSITIVELY LOCATE AND STAKE ALL EXISTING UNDERGROUND FACILITIES. ANY FACILITIES LOCATED WITHIN 10 FEET OF THE DESIGNED DRILLED PATH SHALL BE EXPOSED.

3. MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

Route 17 R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information					
Project :	Dominion Atlantic Coast Pipeline	User :	KM	N		
Crossing :	20" Route 17 Crossing	Date :	7/22/2	2016		
Comments :	er tolerances	(40' loi	nger			
Commenta :	and 30' deeper than design with a 1,350' radius) with 12 ppg r	nud and no E	3C			
	Line Pipe Properties					
	Pipe Outside Diameter =	20.000	in			
	Wall Thickness =	0.411	in			
	Specified Minimum Yield Strength =	70,000	psi			
	Young's Modulus =	2.9E+07	psi			
	Moment of Inertia =	1213.22	in ⁴			
	Pipe Face Surface Area =	25.29	in ²			
	Diameter to Wall Thickness Ratio, D/t =	49				
	Poisson's Ratio =	0.3				
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F			
	Pipe Weight in Air =	85.99	lb/ft			
	Pipe Interior Volume =	2.01	ft ³ /ft			
	Pipe Exterior Volume =					
	Drilling Mud Density =	12.0	ppg			
	=	89.8	lb/ft ³			
	Ballast Density =	62.4	lb/ft ³			
	0.30					
	0.025	psi				
	125.18	lb/ft				
	195.83	lb/ft				
	Installation Stress Limits					
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi			
	For D/t <= 1,500,000/SMYS, F_b =	52,500	psi	No		
	For D/t > 1,500,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No		
	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes		
	Allowable Bending Stress, F _b =					
	Elastic Hoop Buckling Stress, F_{he} =	10,777	psi			
	For $F_{he} \le 0.55^{\circ}SMYS$, Critical Hoop Buckling Stress, $F_{hc} =$	10,777	psi	Yes		
	For F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No		
	For F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No		
	For $F_{he} > 6.2$ *SMYS, F_{hc} =	70,000	psi	No		
	Critical Hoop Buckling Stress, F _{hc} =	10,777	psi			
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi			

Route 17 R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Route 17 R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Ріре	Pipe and Installation Properties								
Based on profile design entered in 'Step 2, Drilled Path Input'.									
Pipe Diameter, D =20.000inPIpe Weight, W =86.0lb/flCoefficient of Soil Friction, μ =0.30	Fluid Drag Coefficient, $C_d =$ 0.025psiBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb								
Exit Tangent - Summary of Pulling Load Calculations									
Segment Length, L = 239.6 ft Exit Angle, θ = 8.0 °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft								
Frictional Drag = $W_e L \mu \cos\theta = 7,820$ Ib									
Fluidic Drag = 12π D L C _d = 4,517 Ib									
Axial Segment Weight = $W_e L \sin \theta = 3,663$ lb									
Pulling Load on Exit Tangent = 16,000 Ib									
Exit Sag Bend - S	Summary of Pulling Load Calculations								
Segment Length, L =188.5ftSegment Angle with Horizontal, θ =-8.0°Deflection Angle, α =-4.0°	Average Tension, T = 24,695 Ib Radius of Curvature, R = 1,350 ft Effective Weight, $W_e = W + W_b - W_m = -109.8$ Ib/ft								
h = R [1 - $\cos(\alpha/2)$] = 3.29 ft	j = [(E I) / T] ^{1/2} = 1,194								
Y = $[18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}] = 1.8E+05$	X = (3 L) - [(j / 2) tanh(U/2)] = 124.65								
U = (12 L) / j = 1.90	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 20,653 lb								
Bending Frictional Drag = $2 \mu N = 12,392$ lb									
Fluidic Drag = $12 \pi D L C_d = 3,553$ lb									
Axial Segment Weight = $W_e L \sin \theta = 1,444$ Ib									
Pulling Load on Exit Sag Bend =17,389IbTotal Pulling Load =33,389Ib									
Bottom Tangent -	Summary of Pulling Load Calculations								
Segment Length, L = 2187.6 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft								
Frictional Drag = W _e L μ = 72,085 Ib									
Fluidic Drag = $12 \pi D L C_d = 41,235$ lb									
Axial Segment Weight = $W_e L \sin\theta = 0$ Ib									
Pulling Load on Bottom Tangent = 113,319 Ib Total Pulling Load = 146,709 Ib									

Route 17 R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations								
S Segment Angle D	egment Length, L = with Horizontal, θ = leflection Angle, α =	235.6 ft 10.0 ° 5.0 °	Av Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	158,638 lb 1,350 ft -109.8 lb/ft			
h	= R [1 - $\cos(\alpha/2)$] =	5.14 ft	X = (3) -	$j = [(E I) / T]^{1/2} =$	471			
τ – [16 (L)] - [(),	(1-cosh(0/2)]-	0.0L+05			472.55			
	$U = (12 L) / J = 6.00 \qquad N = [(1 H) - W_e \cos((7/144)] / (X / 12) = 36,123]$							
Bending Fricti	onal Drag = 2 μ N =	21,674 lb						
Fluidic D	rag = 12 π D L C _d =	4,441 lb						
Axial Segment W	/eight = $W_e L \sin \theta$ =	-2,256 lb	Negative value indicate	es axial weight applied	n direction of installation			
Pulling Load on To	Entry Sag Bend = tal Pulling Load =	23,859 lb 170,568 lb						
		Entry Tangent - S	ummary of Pulling	Load Calculations				
s	egment Length, L = Entry Angle, θ =	145.8 ft 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	-109.8 lb/ft			
Frictional Dr Fluidic D Axial Segment W Pulling Load o	Frictional Drag = $W_e L \mu \cos\theta = 4,732$ lb Fluidic Drag = $12 \pi D L C_d = 2,749$ lb Axial Segment Weight = $W_e L \sin\theta = -2,781$ lb Negative value indicates axial weight applied in direction of installation							
То	tal Pulling Load =	175,267 lb						
		Summary of Cal	culated Stress vs.	Allowable Stress				
		-						
	Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point	6,929 ok	0 ok	0 ok	0.11 ok	0.02 ok			
PC	6,744 OK	0 ок	З84_ОК	U.11 OK	0.02 OK			
	6,744 ok	17,901 ok	384 ok	0.50 ok	0.21 ok			
PT	5,000 ok							
	5,800 OK 1,320 ok		695 OK	0.09 OK	0.02 OK			
PC	1,020			0.02				
рт	1,320 ok 633 ok	17,901 ok 17,901 ok	695 ok 496 ok	0.41 ok 0.40 ok	0.14 ok 0.12 ok			
''	633 ok	0 ok	496 ok	0.01 ok	0.01 ok			
Exit Point	0 ok	0 ok	-10 ok	0.00 ok	0.00 ok			

Elizabeth River

Supporting Information

- Plan & profile drawing presenting HDD crossing design (1 page, 11x17)
- Installation stress analysis, without buoyancy control (4 pages)
- Hydrofracture evaluation (1 page)

- 3. THE GEDTECHNICAL DATA IS DNLY DESCRIPTIVE OF THE LOCATIONS ACTUALLY SAMPLED. EXTENSION OF THIS DATA DUTSIDE OF THE DRIGINAL BORINGS MAY BE DDINE TO CHARACTERIZE THE SDIL CONDITIONS, HOWEVER, COMPANY DDES NOT GUARANTEE THESE CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 4. ALIGNMENT: UP TO 10 FEET RIGHT OR LEFT OF THE DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 1,350 FEET BASED ON A 3-JDINT AVERAGE (RANGE 2 DRILL PIPE)

З,

ATLANTIC COAST PIPELINE PROJECT	DI AN AND DROFIT F	E LAW AND FROFILLE DATABATINE CROSSING OF THE ET 17 ABETH DIVER	O-INCH FIFELLINE CAUSSING OF THE ELIZABETH MYEN BY HADIZANTAT DIDECTIONAL DUITINC	DI HONIZON LAL DINECTIONAL DINELING	N: PORTSMOUTH COUNTY, VIRGINIA	DATE CHECKED APPROVED SCALE DRAWING LABEL REVISION	03/30/16 DMP JSP BHOWN FOR ELIZABETH RIVER 0
					LOCATIC	DRAWN	ър. КМN
							CHKD AF
							ΒY
							REVISION DESCRIPTION
							DATE
4							NO.
		Jettrey S. Puckett, P.E.	Consulting Engineer			2424 East 21st Street	Suite 510 Tulsa, Oklahoma 74114
	ı F		^{рко} mi M)je ni 11e 3	ст N D n \ POS -(ю. 15 т){	³⁰⁸ 32

MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

Elizabeth River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

	Project Information						
Project : Dominion Atlantic	Coast Pipeline	User :	KM	N			
Crossing : 20" Elizabeth Rive	er Crossing	Date :	7/22/2	2016			
Commonte : Installation stress	analysis based on worst-case drilled path p	er tolerances	(40' loi	nger			
and 20' deeper th	an design with a 1,350' radius) with 12 ppg r	mud and no E	BC				
	Line Pipe Properties						
	Pipe Outside Diameter =	20.000	in				
	Wall Thickness =	0.411	in				
	Specified Minimum Yield Strength =	70,000	psi				
	Young's Modulus =	2.9E+07	psi				
	Moment of Inertia =	1213.22	in ⁴				
	Pipe Face Surface Area =	25.29	in ²				
	Diameter to Wall Thickness Ratio, D/t =	49					
	Poisson's Ratio =	0.3					
	Coefficient of Thermal Expansion =	6.5E-06	in/in/°F				
	Pipe Weight in Air =	85.99	lb/ft				
	Pipe Interior Volume =	2.01	ft ³ /ft				
	Pipe Exterior Volume =	2.18	ft ³ /ft				
	HDD Installation Properties						
	Drilling Mud Density =	12.0	ppg				
	=	89.8	lb/ft ³				
	Ballast Density =	62.4	lb/ft ³				
	0.30						
	0.025	psi					
	Ballast Weight =	125.18	lb/ft				
	Displaced Mud Weight =	195.83	lb/ft				
	Installation Stress Limits						
	Tensile Stress Limit, 90% of SMYS, F_t =	63,000	psi				
	For D/t <= 1,500,000/SMYS, F_{b} =	52,500	psi	No			
For D/t > 1,50	0,000/SMYS and <= 3,000,000/SMYS, F_b =	44,493	psi	No			
1	For D/t > 3,000,000/SMYS and <= 300, F_b =	45,631	psi	Yes			
	Allowable Bending Stress, $F_b =$	45,631	psi				
	Elastic Hoop Buckling Stress, F_{he} =	10,777	psi				
For F _{he} <= 0.55'	SMYS, Critical Hoop Buckling Stress, F_{hc} =	10,777	psi	Yes			
Fo	r F_{he} > 0.55*SMYS and <= 1.6*SMYS, F_{hc} =	33,440	psi	No			
F	or F_{he} > 1.6*SMYS and <= 6.2*SMYS, F_{hc} =	11,994	psi	No			
	For $F_{he} > 6.2*SMYS$, $F_{hc} =$	70,000	psi	No			
	Critical Hoop Buckling Stress, F _{hc} =	10,777	psi				
	Allowable Hoop Buckling Stress, F _{hc} /1.5 =	7,185	psi				
Elizabeth River R0 Installation Stress Analysis (worst-case).xlsm

J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Elizabeth River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Pipe and Installation Properties							
Based on profile design entered in 'Step 2, Drilled Path Input'.							
Pipe Diameter, D = 20.000 in PIpe Weight, W = 86.0 Ib/f Coefficient of Soil Friction, $\mu = 0.30$	Fluid Drag Coefficient, $C_d =$ psitBallast Weight / ft Pipe, $W_b =$ 125.2lb(If Ballasted)Drilling Mud Displaced / ft Pipe, $W_m =$ 195.8lb(If Submerged)Above Ground Load =0lb						
Exit Tangent - S	Summary of Pulling Load Calculations						
Segment Length, L = 781.0 ft Exit Angle, $\theta = 8.0$ °	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft						
Frictional Drag = $W_e L \mu \cos\theta = 25,485$ lb							
Fluidic Drag = $12 \pi D L C_d = 14,721$ lb							
Axial Segment Weight = $W_e L \sin\theta = 11,939$ lb							
Pulling Load on Exit Tangent = 52,145 Ib							
Exit Sag Bend -	Summary of Pulling Load Calculations						
Segment Length, L = 188.5 ft Segment Angle with Horizontal, θ = -8.0 Deflection Angle, α = -4.0 ° h = R [1 - cos($\alpha/2$)] = 3.29 ft Y = [18 (L) ²] - [(j) ² (1 - cosh(U/2) ⁻¹] = $3.1E+05$	Average Tension, T = $61,727$ b Radius of Curvature, R = $1,350$ ft Effective Weight, W _e = W + W _b - W _m = -109.8 b/ft $j = [(E I) / T]^{1/2} = 755$ X = (3 L) - [(j / 2) tanh(U/2)] = 223.94						
U = (12 L) / j =3.00	N = [(T h) - W _e cos θ (Y/144)] / (X / 12) 23,611 lb						
Bending Frictional Drag = 2 μ N = 14,167 Ib							
Fluidic Drag = 12π D L C _d = 3,553 lb							
Axial Segment Weight = $W_e L \sin\theta = 1,444$ lb							
Pulling Load on Exit Sag Bend = 19,164 Ib Total Pulling Load = 71,309 Ib							
Bottom Tangent -	Summary of Pulling Load Calculations						
Segment Length, L = 0.0 ft	Effective Weight, $W_e = W + W_b - W_m = -109.8$ lb/ft						
Frictional Drag = $W_e L \mu = 1$ Ib Fluidic Drag = 12 π D L C _d = 1 Ib	Fluidic drag is calculated as zero unless entire segment is submerged in drilling fluid. Please reference Step 2, Drilled Path Input						
Axial Segment Weight = $W_e L \sin \theta = 0$ Ib							
Pulling Load on Bottom Tangent =2IbTotal Pulling Load =71,311Ib							

Elizabeth River R0 Installation Stress Analysis (worst-case).xlsm J:\Dominion\1508 - Atlantic Coast\Working\Stress Analysis\

Entry Sag Bend - Summary of Pulling Load Calculations							
Segment Length, L Segment Angle with Horizontal, 6 Deflection Angle, o	= 235.6 ft = 10.0 ° = 5.0 °	A\ Radiu Effective Weight, W	verage Tension, T = us of Curvature, R = V _e = W + W _b - W _m =	80,994 Ib 1,350 ft -109.8 Ib/ft			
$h = R \left[1 - \cos(\alpha/2)\right]$	= 5.14 ft		$j = [(E I) / T]^{1/2} =$	659			
$Y = [18 (L)^{2}] - [(j)^{2} (1 - \cosh(U/2)^{-1}]$	= 6.7E+05	X = (3 L) - [(j / 2) tanh(U/2)] = <u>386.23</u>					
U = (12 L) /]	= 4.29	$N = [(T h) - W_e \cos\theta]$	(Y/144)] / (X / 12) =	28,633 lb			
Bending Frictional Drag = $2 \mu N = 17,180$ lb							
Fluidic Drag = $12 \pi D L C_c$	l = 4,441 lb						
Axial Segment Weight = W _e L sine	= -2,256 lb	Negative value indicate	es axial weight applied	in direction of installation			
Pulling Load on Entry Sag Bend = 19,366 Ib Total Pulling Load = 90,677 Ib							
	Entry Tangent - S	ummary of Pulling	Load Calculations				
Segment Length, L Entry Angle, 6	= 583.0 ft = 10.0 °	Effective Weight, W	$V_e = W + W_b - W_m =$	-109.8 lb/ft			
Frictional Drag = W _e L μ cosθ	Frictional Drag = $W_e L \mu \cos\theta = 18,920$ lb						
Fluidic Drag = 12 ft D L C _c Axial Segment Weight = W _e L sine	Fluidic Drag = $12 \pi D L C_d = 10,990$ lb Axial Segment Weight = $W_e L \sin\theta = -11,120$ lb Negative value indicates axial weight applied in direction of installation						
Pulling Load on Entry Tangent = 18,789 Ib Total Pulling Load = 109,466 Ib							
Summary of Calculated Stress vs. Allowable Stress							
Tensile Stress	Bending Stress	External Hoop Stress	Combined Tensile & Bending	Combined Tensile, Bending & Ext. Hoop			
Entry Point 4,328 of	k 0 ok	0 ok	0.07 ok	0.01 ok			
3,585 oł PC	x 0 ok	1535 ok	0.06 ok	0.05 ok			
3,585 ol 2,819 ol	x 17,901 ok x 17,901 ok	1535 ok 1846 ok	0.45 ok 0.44 ok	0.23 ok 0.25 ok			
PT2,81904	c 0 ok	1846 ok	0.04 ok	0.07 ok			
PC	c 0 ok	1846 ok	0.04 ok	0.07 ok			
2,819 ok 2,062 ok	x 17,901 ok x 17,901 ok	1846 ok 1647 ok	0.44 ok 0.43 ok	0.25 ok 0.22 ok			
Exit Point 0 of	x 0 ok	1647 ok -1 ok	0.03 ok	0.06 ok 0.00 ok			

APPENDIX U

Inspection Form

Date Approved:

Ву: _____

Atlantic Coast Pipeline

SWPPP Inspection Checklist

Check One						Insp	ector Names	/ID #		Ac
Routine Weekly	Inspect	ion	Date:			1				
Precip. event > ().5-inch		Date:			2				
						3				
Soil Conditions:		Notes:				Weat	ther Condition	ons:		
Dry		Saturated								
Wet		Frozen								
Location	LL No.	Feature Details	Inspector ID	Soil Presently Disturbed?	Inspe Date	ection e/Time	ECDs Functional?	ECDs Need Maintenance /Repair/ Replacement?	Photos	Date Corrected

Notes:

Y = Yes N = No

ECDs = Erosion control devices

EI = Environmental Inspector

Road or railroad crossing

APPENDIX V

Training Record

Training Record Storm Water, Sediment, and Erosion Control Training

Project Name	:	
Instructor's Name	:	
Location	:	
Date	:	
Length	:	
Topics:		
Erosion Contro	ol BMPs	Good Housekeeping BMPs
Sediment Control BMPs		SWPPP Provisions
□ Non-Storm Wa	ter BMPs	Conducting Inspections
Emergency Procedures		Turbidity Monitoring

- Groundwater Protection Plan
- □ Turbidity Monitoring
- □ Other (Specify):_____

Attendee Roster: (attach additional pages as necessary)

Name of Attendee	Company/Agency

Inspector's Signature:

Title: